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Outline

Today:
• CFL condition
• Numerical examples using Clawpack
• Numerical dissipation of upwind
• Lax-Wendroff method (second order)
• Numerical dispersion, modified equations

Next:
• High resolution methods

Reading: Chapters 5 and 6
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Godunov’s method

Qni defines a piecewise constant function

q̃n(x, tn) = Qni for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.
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Wave-propagation viewpoint

For linear system qt+Aqx = 0, the Riemann solution consists of

wavesWp propagating at constant speed λp.
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Matrix splitting for upwind method

For qt +Aqx = 0, the upwind method (Godunov) is:
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Natural generalization of upwind to a system.

If all eigenvalues are positive, then A+ = A and A− = 0,

If all eigenvalues are negative, then A+ = 0 and A− = A.
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The CFL Condition

For the method to be stable, the numerical domain of
dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

q(x, t) = q(x− ut, 0)

For a 3-point method, CFL condition requires
∣∣u∆t

∆x

∣∣ ≤ 1.

If this is violated:
True solution is determined
by data at a point x − ut that
is ignored by the numerical
method, even as the grid is
refined.
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Stencil CFL Condition
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Numerical Experiments

Experiment with the code in
$CLAW/apps/advection/1d/example1

Make the following changes in setrun.py:
• Upwind method (clawdata.order = 1)
• Finer grid (clawdata.mx = 100)
• Periodic boundary conditions
clawdata.mthbc_xlower = 2
clawdata.mthbc_xupper = 2

• Narrower pulse (beta = 300 or 3000)
• Courant number greater than 1.
clawdata.cfl_desired = 1.1
clawdata.cfl_max = 1.1
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Upwind for a linear system

The one-sided method

Qn+1
i = Qni −

∆t
∆x

A(Qni −Qni−1)

is stable only if 0 ≤ ∆tλp/∆x ≤ 1 for all p.

Upwind method based on sign of each λp:

Let λ+ = max(λ, 0), λ− = min(λ, 0),
Λ+ = diag((λp)+), Λ− = diag((λp)−),
A+ = RΛ+R−1, A− = RΛ−R−1

Then
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A−(Qni+1 −Qni ).
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Symmetric methods

Centered in space, forward in time:

Qn+1
i = Qni −

∆t
∆x

(
1
2
A

)
(Qni −Qni−1)− ∆t

∆x

(
1
2
A

)
(Qni+1 −Qni )

= Qni −
∆t

2∆x
A(Qni+1 −Qni−1)

Centered approximation to qx, but unstable for any fixed ∆t/∆x.

Lax-Friedrichs:
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This is stable if
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Numerical dissipation

Lax-Friedrichs:
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The unstable method with the addition of artificial viscosity,

Approximates qt +Aqx = εqxx (modified equation)

with ε = ∆x2

2∆t = O(∆x) if ∆t/∆x is fixed as ∆x→ 0.
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Modified Equations

The upwind method

Qn+1
i = Qni −

∆t
∆x

u(Qni −Qni−1).

gives a first-order accurate approximation to qt + uqx = 0.

But it gives a second-order approximation to

qt + uqx =
u∆x

2

(
1− u∆t

∆x

)
qxx.

This is an advection-diffusion equation.

Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is O(∆x).

Note: No diffusion if u∆t
∆x = 1 (Qn+1

i = Qni−1 exactly).
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Lax-Wendroff

Second-order accuracy?

Taylor series:

q(x, t+ ∆t) = q(x, t) + ∆tqt(x, t) +
1
2

∆t2qtt(x, t) + · · ·

From qt = −Aqx we find qtt = A2qxx.

q(x, t+ ∆t) = q(x, t)−∆tAqx(x, t) +
1
2

∆t2A2qxx(x, t) + · · ·

Replace qx and qxx by centered differences:
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Modified Equation for Lax-Wendroff

The Lax-Wendroff method
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gives a second-order accurate approximation to qt + uqx = 0.

But it gives a third-order approximation to

qt + uqx = −uh
2
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)
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This has a dispersive term with O(∆x2) coefficient.

Indicates that the numerical solution will become oscillatory.
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Dispersion relation
Consider a single Fourier mode:

q(x, 0) = eiξx =⇒ q(x, t) = ei(ξx−ωt)

Determine ω(ξ) based on the PDE.
This is the dispersion relation.

qt = −iωq, qx = iξq, qxx = −ξ2q, qxxx = −iξ3q, . . .

qt + uqx = 0 =⇒ ω(ξ) = uξ, q(x, t) = eiξ(x−ut)

(translates at speed u for all ξ)

qt + uqx = εqxx =⇒ q(x, t) = e−εξ
2teiξ(x−ut) (decays)

qt + uqx = βqxxx =⇒ q(x, t) = eiξ(x−(u+βξ2)t)

(translates at speed u+ βξ2 that depends on wave number!)

R.J. LeVeque, University of Washington AMath 574, January 24, 2011 [FVMHP Sec. 8.6]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 24, 2011 [FVMHP Sec. 8.6]


