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Outline

Today:
• Review acoustics
• Solving Riemann problem for linear systems
• Coupled acoustics-advection
• Acoustics in heterogeneous medium

• Finite volume methods
• Conservation form
• Godunov’s method

Next:
• More about finite volumes

Reading: Chapter 4
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Eigenvectors for acoustics

A =
[

u0 K0

1/ρ0 u0

]

Eigenvectors:

r1 =
[
−ρ0c0

1

]
, r2 =

[
ρ0c0

1

]
.

Check that Arp = λprp, where

λ1 = u0 − c0, λ2 = u0 + c0.

with c0 =
√
K0/ρ0 =⇒ K0 = ρ0c

2
0.

Note: Eigenvectors are independent of u0.

Let Z0 = ρ0c0 =
√
K0ρ0 = impedance.
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Physical meaning of eigenvectors

Eigenvectors for acoustics:

r1 =
[
−ρ0c0

1

]
=
[
−Z0

1

]
, r2 =

[
ρ0c0

1

]
=
[
Z0

1

]
.

In a simple 1-wave (propagating at speed λ1 = −c0),
[
px

ux

]
= β(x)

[
−Z0

1

]

The pressure variation is −Z0 times the velocity variation.

Similarly, in a simple 2-wave (λ2 = c0),
[
px

ux

]
= β(x)

[
Z0

1

]

The pressure variation is Z0 times the velocity variation.
R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.5]
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Acoustic waves

q(x, 0) =
[
p
◦(x)

0

]
= −p

◦
(x)

2Z0

[
−Z0

1

]
+ p

◦
(x)

2Z0

[
Z0

1

]

= w1(x, 0)r1 + w2(x, 0)r2

=

[
p
◦(x)/2

−p◦(x)/(2Z0)

]
+

[
p
◦(x)/2

p
◦(x)/(2Z0)

]
.
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Solution by tracing back on characteristics

The general solution for acoustics:

q(x, t) = w1(x− λ1t, 0)r1 + w2(x− λ2t, 0)r2

= w1(x+ c0t, 0)r1 + w2(x− c0t, 0)r2

(x, t)

x− λ2t

= x− c0t

x− λ1t

= x + c0t

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.6]
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Solution by tracing back on characteristics

The general solution for acoustics:

q(x, t) = w1(x− λ1t, 0)r1 + w2(x− λ2t, 0)r2

q(x, t)

w2(x− λ2t, 0)

= `2q(x− λ2t, 0)

w1(x− λ1t, 0)

= `1q(x− λ1t, 0)

w2 constant w1 constant
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Riemann Problem

Special initial data:

q(x, 0) =
{
ql if x < 0
qr if x > 0

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds ±c.
R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.9.1]
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Riemann Problem for acoustics

Waves propagating in x–t space:

Left-going waveW1 = qm − ql and
right-going waveW2 = qr − qm are eigenvectors of A.
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Riemann Problem for acoustics

In x–t plane:

q(x, t) = w1(x+ ct, 0)r1 + w2(x− ct, 0)r2

Decompose ql and qr into eigenvectors:

ql = w1
l r

1 + w2
l r

2

qr = w1
rr

1 + w2
rr

2

Then
qm = w1

rr
1 + w2

l r
2

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.9]
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Riemann Problem for acoustics

Waves propagating in x–t space:

Left-going waveW1 = qm − ql and
right-going waveW2 = qr − qm are eigenvectors of A.
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Riemann Problem for acoustics

ql = w1
l r

1 + w2
l r

2

qr = w1
rr

1 + w2
rr

2

Then
qm = w1

rr
1 + w2

l r
2

So the wavesW1 andW2 are eigenvectors of A:

W1 = qm − ql = (w1
r − w1

l )r1

W2 = qr − qm = (w2
r − w2

l )r2.

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.9]
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Riemann solution for a linear system

Linear hyperbolic system: qt +Aqx = 0 with A = RΛR−1.
General Riemann problem data ql, qr ∈ lRm.

Decompose jump in q into eigenvectors:

qr − ql =
m∑

p=1

αprp

Note: the vector α of eigen-coefficients is

α = R−1(qr − ql) = R−1qr −R−1ql = wr − wl.

Riemann solution consists of m wavesWp ∈ lRm:

Wp = αprp, propagating with speed sp = λp.

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.9]
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Coupled advection–acoustics

Flow in pipe with constant background velocity ū.
φ(x, t) = concentration of advected tracer
u(x, t), p(x, t) = acoustic velocity / pressure perturbation

Equations include advection at velocity ū:

pt + ūpx + Kux = 0
ut + (1/ρ)px + ūux = 0
φt + ūφx = 0

This is a linear system qt +Aqx = 0 with

q =



p
u
φ


 , A =




ū K 0
1/ρ ū 0
0 0 ū


 .

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.10]
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Coupled advection–acoustics

q =



p
u
φ


 , A =




ū K 0
1/ρ ū 0
0 0 ū


 .

eigenvalues: λ1 = u− c, λ2 = u λ3 = u+ c,

eigenvectors: r1 =



−Z
1
0


 , r2 =




0
0
1


 , r3 =



Z
1
0


 ,

where c =
√
κ/ρ, Z = ρc =

√
ρκ.

R =



−Z 0 Z
1 0 1
0 1 0


 , R−1 =

1
2Z



−1 Z 0
0 0 1
1 Z 0


 .
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Coupled advection–acoustics

Wave structure of solution in the x–t plane

With no advection:

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.10]
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Coupled advection–acoustics

Wave structure of solution in the x–t plane

Subsonic case (|u0| < c):
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Coupled advection–acoustics

Wave structure of solution in the x–t plane

Supersonic case (|u0| > c):

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 3.10]
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Wave propagation in heterogeneous medium

Linear system qt +A(x)qx = 0. For acoustics:

A =
[

0 K(x)
1/ρ(x) 0

]
.

eigenvalues: λ1 = −c(x), λ2 = +c(x),

where c(x) =
√
κ(x)/ρ(x) = local speed of sound.

eigenvectors: r1(x) =
[
−Z(x)

1

]
, r2(x) =

[
Z(x)

1

]

where Z(x) = ρc =
√
ρκ = impedance.

R(x) =
[
−Z(x) Z(x)

1 1

]
, R−1(x) =

1
2Z(x)

[
−1 Z(x)
1 Z(x)

]
.

Cannot diagonalize unless Z(x) is constant.
R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 9.6]
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Wave propagation in heterogeneous medium

Multiply system
qt +A(x)qx = 0

by R−1(x) on left to obtain

R−1(x)qt +R−1(x)A(x)R(x)R−1(x)qx = 0

or
(R−1(x)q)t + Λ(x)

[
(R−1(x)q)x −R−1

x (x)q
]

= 0

Let w(x, t) = R−1(x)q(x, t) (characteristic variable).
There is a coupling term on the right:

wt + Λ(x)wx = Λ(x)R−1
x (x)R(x)w

=⇒ reflections (unless R−1
x (x) ≡ 0).

R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 9.7, 9.8]
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Wave propagation in heterogeneous medium

Generalized Riemann problem: single jump discontinuity in
q(x, 0) and in K(x) and ρ(x).

Decompose jump in q as linear combination of eigenvectors,
with
• left-going waves: eigenvectors for material on left,
• right-going waves: eigenvectors for material on right.

R(x) =
[
−Z(x) Z(x)

1 1

]
, R−1(x) =

1
2Z(x)

[
−1 Z(x)
1 Z(x)

]
.

Riemann solution: decompose

qr − ql = α1

[
−Zl

1

]
+ α2

[
Zr

1

]
=W1 +W2

The waves propagate with speeds s1 = −cl and s2 = cr.
R.J. LeVeque, University of Washington AMath 574, January 12, 2011 [FVMHP Sec. 9.9]
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Wave propagation in heterogeneous medium

Riemann solution: decompose

qr − ql = α1

[
−Zl

1

]
+ α2

[
Zr

1

]
=W1 +W2

The waves propagate with speeds s1 = −cl and s2 = cr.

−4 −3 −2 −1 0 1 2 3 4
x
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