
AMath 574 March 9, 2011

Today:
• Approximate Riemann solvers
• Multidimensional

Friday:
• AMR

Projects: Make an appointment this week, and see
http://www.clawpack.org/links/burgersadv

R.J. LeVeque, University of Washington AMath 574, March 9, 2011

http://www.clawpack.org/links/burgersadv


Shallow water equations

h(x, t) = depth
u(x, t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u+ p where p = hydrostatic pressure

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

= 0

Jacobian matrix:

f ′(q) =
[

0 1
gh− u2 2u

]
, λ = u±

√
gh.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 13.1]



Roe solver for Shallow Water

Given hl, ul, hr, ur, define

h̄ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√
hr

Then

Â = Jacobian matrix evaluated at this average state

satisfies
A(qr − ql) = f(qr)− f(ql).

• Roe condition is satisfied,
• Isolated shock modeled well,
• Wave propagation algorithm is conservative,
• High resolution methods obtained using corrections with

limited waves.
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Roe solver for Shallow Water

Given hl, ul, hr, ur, define

h̄ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√
hr

Eigenvalues of Â = f ′(q̂) are:

λ̂1 = û− ĉ, λ̂2 = û+ ĉ, ĉ =
√
gh̄.

Eigenvectors:

r̂1 =
[

1
û− ĉ

]
, r̂2 =

[
1

û+ ĉ

]
.

Examples in Clawpack 4.3 to be converted soon!

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 15.3.3]

http://www.amath.washington.edu/~claw/applications/shallow/www/index.html


Potential failure of linearized solvers

Consider shallow water with h` = hr and ur = −u` � 1.

Outflow away from interface =⇒ small intermediate hm.

With ur = 0.8 With ur = 1.8

Roe hm > 0 Roe hm < 0

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 15.3.6]



HLL Solver

Harten – Lax – van Leer (1983): Use only 2 waves with
s1 =minimum characteristic speed
s2 =maximum characteristic speed

W1 = Q∗ −Q`, W2 = Qr −Q∗

Conservation implies unique value for middle state Q∗:

s1W1 + s2W2 = f(Qr)− f(Q`)

=⇒ Q∗ =
f(Qr)− f(Q`)− s2Qr + s1Q`

s1 − s2
.

Choice of speeds:
• Max and min of expected speeds over entire problem,
• Max and min of eigenvalues of f ′(Q`) and f ′(Qr).

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [Sec. 15.3]
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HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water)
that guarantees positivity.

Based on characteristic speeds and Roe averages:

s1
i−1/2 = min

p
(min(λp

i , λ̂
p
i−1/2)),

s2
i−1/2 = max

p
(max(λp

i+1, λ̂
p
i−1/2)).

where

λp
i is the pth eigenvalue of the Jacobian f ′(Qi),

λ̂p
i−1/2 is the pth eigenvalue using Roe average f ′(Q̂i−1/2)

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [Sec. 15.3]



Wave propagation methods

• Solving Riemann problem gives wavesWp
i−1/2,,

Qi −Qi−1 =
∑

p

Wp
i−1/2

and speeds sp
i−1/2. (Usually approximate solver used.)

• These waves update neighboring cell averages depending
on sign of sp (Godunov’s method) via fluctuations.

• Waves also give characteristic decomposition of slopes:

qx(xi−1/2, t) ≈
Qi −Qi−1

∆x
=

1
∆x

∑
p

Wp
i−1/2

• Apply limiter to each wave to obtain W̃p
i−1/2.

• Use limited waves in second-order correction terms.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Chap. 15]



High-resolution wave-propagation algorithm

Qn+1
i = Qn

i −
∆t
∆x

(A−∆Qi+1/2+A+∆Qi−1/2)−∆t
∆x

(F̃i+1/2 − F̃i−1/2),

where

F̃i−1/2 =
1
2

m∑
p=1

|sp
i−1/2|

(
1− ∆t

∆x
|sp

i−1/2|
)
W̃p

i−1/2.

W̃p
i−1/2 represents a limited version of the waveWp

i−1/2,
obtained by comparing this jump with the jumpWp

I−1/2 in the
same family at the neighboring Riemann problem in the upwind
direction,

I =

{
i− 1 if sp

i−1/2 > 0
i+ 1 if sp

i−1/2 < 0.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 15.4]



Wave limiters

LetWi−1/2 = Qn
i −Qn

i−1.

Upwind: Qn+1
i = Qn

i − u∆t
∆xWi−1/2.

Lax-Wendroff:

Qn+1
i = Qn

i −
u∆t
∆x
Wi−1/2 −

∆t
∆x

(F̃i+1/2 − F̃i−1/2)

F̃i−1/2 =
1
2

(
1−

∣∣∣∣u∆t
∆x

∣∣∣∣) |u|Wi−1/2

High-resolution method:

F̃i−1/2 =
1
2

(
1−

∣∣∣∣u∆t
∆x

∣∣∣∣) |u|W̃i−1/2

where W̃i−1/2 = Φi−1/2Wi−1/2.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 6.13]



Extension to linear systems

Approach 1: Diagonalize the system to

vt + Λvx = 0

Apply scalar algorithm to each component.

Approach 2:

Solve the linear Riemann problem to decompose Qn
i −Qn

i−1

into waves.

Apply a wave limiter to each wave.

These are equivalent.

Important to apply limiters to waves or characteristic
components, rather than to original variables.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 6.13]



Wave limiters for system

Qi −Qi−1 is split into wavesWp
i−1/2 = αp

i−1/2r
p
i−1/2 ∈ lRm.

Replace by W̃p
i−1/2 = Φ(θp

i−1/2)Wp
i−1/2 where

θp
i−1/2 =

Wp
i−1/2 · W

p
I−1/2

Wp
i−1/2 · W

p
i−1/2

=
αp

I−1/2

αp
i−1/2

if rp
i−1/2 = rp

I−1/2

where

I =

{
i− 1 if sp

i−1/2 > 0
i+ 1 if sp

i−1/2 < 0.

In the scalar case this reduces to

θ1
i−1/2 =

W1
I−1/2

W1
i−1/2

=
QI −QI−1

Qi −Qi−1

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 15.4]



First order hyperbolic PDE in 2 space dimensions

Advection equation: qt + uqx + vqy = 0

First-order system: qt +Aqx +Bqy = 0

where q ∈ lRm and A,B ∈ lRm×m.

Hyperbolic if cos(θ)A+ sin(θ)B is diagonalizable with real
eigenvalues, for all angles θ.

This is required so that plane-wave data gives a 1d hyperbolic
problem:

q(x, y, 0) = q̆(x cos θ + y sin θ) (\breve q)

implies contours of q in x–y plane are orthogonal to θ–direction.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Chap. 18]
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Acoustics in 2 dimensions

pt +K0(ux + vy) = 0
ρ0ut + px = 0
ρ0vt + py = 0

A =

 0 K0 0
1/ρ0 0 0

0 0 0

 , Rx =

 −Z0 0 Z0

1 0 1
0 1 0


Solving qt +Aqx = 0 gives pressure waves in (p, u).

x-variations in v are stationary.

B =

 0 0 K0

0 0 0
1/ρ0 0 0

 Ry =

 −Z0 0 Z0

0 1 0
1 0 1


Solving qt +Bqy = 0 gives pressure waves in (p, v).

y-variations in u are stationary.
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2d finite volume method

Qn+1
ij = Qn

ij −
∆t
∆x

[Fn
i+1/2,j − F

n
i−1/2,j ]

− ∆t
∆y

[Gn
i,j+1/2 −G

n
i,j−1/2].

Fluctuation form:

Qn+1
ij = Qij −

∆t
∆x

(A+∆Qi−1/2,j +A−∆Qi+1/2,j)

− ∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2)

− ∆t
∆x

(F̃i+1/2,j − F̃i−1/2,j)− ∆t
∆y

(G̃i,j+1/2 − G̃i,j−1/2).

The F̃ and G̃ are correction fluxes to go beyond Godunov’s
upwind method.

Incorporate approximations to second derivative terms in each
direction (qxx and qyy) and mixed term qxy.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 19.3.3]



Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver rpn2.f
Solves 1d Riemann problem qt +Aqx = 0
Decomposes ∆Q = Qij −Qi−1,j into A+∆Q and A−∆Q.
For qt +Aqx +Bqy = 0, split using eigenvalues, vectors:

A = RΛR−1 =⇒ A− = RΛ−R−1, A+ = RΛ+R−1

Input parameter ixy determines if it’s in x or y direction.
In latter case splitting is done using B instead of A.
This is all that’s required for dimensional splitting.

Transverse Riemann solver rpt2.f
Decomposes A+∆Q into B−A+∆Q and B+A+∆Q by splitting
this vector into eigenvectors of B.

(Or splits vector into eigenvectors of A if ixy=2.)

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Chap. 19]
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Acoustics in heterogeneous media

qt +A(x, y)qx +B(x, y)qy = 0, q = (p, u, v)T ,

where

A =

 0 K(x, y) 0
1/ρ(x, y) 0 0

0 0 0

 , B =

 0 0 K(x, y)
0 0 0

1/ρ(x, y) 0 0

 .
Note: Not in conservation form!

Wave propagation still makes sense. In x-direction:

W1 = α1

 −Zi−1,j

1
0

 , W2 = α2

 0
0
1

 , W3 = α3

 Zij

1
0

 .
Wave speeds: s1

i−1/2,j = −ci−1,j , s2
i−1/2,j = 0, s3

i−1/2,j = +cij .

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.5]
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Acoustics in heterogeneous media

W1 = α1

 −Zi−1,j

1
0

 , W2 = α2

 0
0
1

 , W3 = α3

 Zij

1
0

 .
Decompose ∆Q = (∆p, ∆u, ∆v)T :

α1
i−1/2,j = (−∆Q1 + Z∆Q2)/(Zi−1,j + Zij),

α2
i−1/2,j = ∆Q3,

α3
i−1/2,j = (∆Q1 + Zi−1,j∆Q2)/(Zi−1,j + Zij).

Fluctuations: (Note: s1 < 0, s2 = 0, s3 > 0)

A−∆Qi−1/2,j = s1
i−1/2,jW

1
i−1/2,j ,

A+∆Qi−1/2,j = s3
i−1/2,jW

3
i−1/2,j .
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1
i−1/2,j ,
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i−1/2,jW

3
i−1/2,j .
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Acoustics in heterogeneous media

Transverse solver: Split right-going fluctuation

A+∆Qi−1/2,j = s3
i−1/2,jW

3
i−1/2,j

into up-going and down-going pieces:

Decompose A+∆Qi−1/2,j into eigenvectors of B. Down-going:

A+∆Qi−1/2,j = β1

[
−Zi,j−1

0
1

]
+ β2

[ 0
−1

0

]
+ β3

[
Zij
0
1

]
,

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.5.1]



Transverse solver for acoustics
Up-going part: B+A+∆Qi−1/2,j = ci,j+1β

3r3 from

A+∆Qi−1/2,j = β1

[
−Zij

0
1

]
+ β2

[ 0
−1

0

]
+ β3

[
Zi,j+1

0
1

]
,

β3 =
(
(A+∆Qi−1/2,j)

1 + (A+∆Qi−1/2,j)
3Zi,j+1

)
/ (Zij +Zi,j+1).

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.5.1]



Transverse Riemann solver in Clawpack

rpt2 takes vector asdq and returns bmasdq and bpasdq
where

asdq = A∗∆Q represents either
A−∆Q if imp = 1, or
A+∆Q if imp = 2.

Returns B−A∗∆Q and B+A∗∆Q.

Note: there is also a parameter ixy:

ixy = 1 means normal solve was in x-direction,

ixy = 2 means normal solve was in y-direction,
In this case asdq represents B−∆Q or B+∆Q and
the routine must return A−B∗∆Q and A+B∗∆Q.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.5.1]
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Shallow water equations in two dimensions

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = 0

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= 0

Jacobian matrices:

f ′(q) =

[
0 1 0

−u2 + gh 2u 0
−uv v u

]
, g′(q) =

[
0 0 1
−uv v u

−v2 + gh 0 2v

]
.

Eigenvalue and eigenvectors of f ′(q):

λx1 = u− c, λx2 = u, λx3 = u+ c,

rx1 =
[ 1
u− c
v

]
, rx2 =

[ 0
0
1

]
, rx3 =

[ 1
u+ c
v

]
.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.7]



Shallow water equations in two dimensions

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = 0

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= 0

Jacobian matrices:

f ′(q) =

[
0 1 0

−u2 + gh 2u 0
−uv v u

]
, g′(q) =

[
0 0 1
−uv v u

−v2 + gh 0 2v

]
.

Eigenvalue and eigenvectors of f ′(q):

λx1 = u− c, λx2 = u, λx3 = u+ c,

rx1 =
[ 1
u− c
v

]
, rx2 =

[ 0
0
1

]
, rx3 =

[ 1
u+ c
v

]
.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.7]



Shallow water equations in two dimensions

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = 0

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= 0

Jacobian matrices:

f ′(q) =

[
0 1 0

−u2 + gh 2u 0
−uv v u

]
, g′(q) =

[
0 0 1
−uv v u

−v2 + gh 0 2v

]
.

Eigenvalue and eigenvectors of f ′(q):

λx1 = u− c, λx2 = u, λx3 = u+ c,

rx1 =
[ 1
u− c
v

]
, rx2 =

[ 0
0
1

]
, rx3 =

[ 1
u+ c
v

]
.

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.7]



Structure of dam-break Riemann solution in 2d

hl > hr, ul = ur = 0, vl < 0, vr > 0.

Jump in shear velocity v is advected with velocity um. (Linearly degenerate)

Note: Variations in v (y-velocity) in the x-direction do not compress fluid.

(Elasticity: restoring force from shear deformation =⇒ shear waves.)

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Fig. 18.1]
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Shallow water equations in two dimensions

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = 0

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= 0

Roe averages:

h̄ =
1
2

(hl + hr), û =
√
hl ul +

√
hr ur√

hl +
√
hr

, v̂ = similar.

Roe matrix in x-direction:

Â =

[
0 1 0

−û2 + gh̄ 2û 0
−ûv̂ v̂ û

]
= f ′(q̂)

R.J. LeVeque, University of Washington AMath 574, March 9, 2011 [FVMHP Sec. 21.7]
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(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = 0

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= 0

Roe averages:

h̄ =
1
2

(hl + hr), û =
√
hl ul +

√
hr ur√

hl +
√
hr

, v̂ = similar.
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Shallow water equations in two dimensions

Roe matrix in x-direction:

Â =

 0 1 0
−û2 + gh̄ 2û 0
−ûv̂ v̂ û

 ,
has eigenvalues and eigenvectors

λ̂x1 = û− ĉ, λ̂x2 = û λ̂x3 = û+ ĉ

r̂x1 =

 1
û− ĉ
v̂

 , r̂x2 =

 0
0
1

 , r̂x3 =

 1
û+ ĉ
v̂



Transverse solver: use v̂ ± ĉ for transverse wave speeds.
http:

//www.amath.washington.edu/~claw/applications/shallow/2d/rp/
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