AMath 574 March 7, 2011

Today:
e Finite volume methods for nonlinear systems
o Wave propagation algorithms
e Approximate Riemann solvers

Wednesday:
e More about finite volume methods

Friday:
e Projects, What else??

Reading: Chapter 15

Projects: Make an appointment this week, and see
http://www.clawpack.org/links/burgersadv

R.J. LeVeque, University of Washington AMath 574, March 7, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011

Godunov’s method on a nonlinear system

Solve Riemann problems and average solution after time At.

SmaxAt/AZ‘ < 1/2 1/2 < SmaxAt/AZ‘ <1

We do not want to compute nonlinear interaction of waves!
But can compute averages from edge fluxes without doing so!

Or with wave-propagation algorithm...

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Fig. 15.1]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [FVMHP Fig. 15.1]

Upwind wave-propagation algorithm
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R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Fig. 15.1]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011  [FVMHP Fig. 15.1]




All shock solution to the nonlinear Riemann problem

For the wave-propagation algorithm we need jump

discontinuities szq/z'

All-shock Riemann solution: Ignore rarefaction waves and use
intersections of Hugoniot loci to define Riemann solution.

Correct solution in some cases.

Will replace rarefaction waves by entropy-violating shocks.

If rarefaction is not transonic this is generally not a bad
approximation: cell averages are very similar.

Transonic rarefactions can be handled by modifying
AiAQZ—_l/Q, the flux-difference splitting used in 1st order terms.

Still use shock waves for high-resolution corrections.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Chap. 15]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [FVMHP Chap. 15]

Upwind wave-propagation algorithm

First order Godunov method:
n+1 n At + -
QT =Qi - s [ATAQ;_1/2 + A AQi412]

where

m

ATAQ;_12 = Z(S?_UQ)_WlP—I/Z’
p=1

ATAQ; 12 = Z(Sil/grrwﬁl/zv

p=1

May need to modify these by an entropy fix.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [FVMHP Sec. 15.3]

Entropy fix

Various approaches possible.

1. Compute “exact” value qV(Qi,l, Q;) and set

ATAQi12 = F(@") = F(Qi-v),
AYAQis = F(Q) — f(a").

2. Split transonic wave WY
A+AQ2‘71/2-

1/2 between A~AQ;_1/2 and

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.5]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011  [FVMHP Sec. 15.3.5]




Approximate Riemann solvers

For nonlinear problems, computing the exact solution to each
Riemann problem may not be possible, or too expensive.

Often the nonlinear problem ¢; + f(g). = 0 is approximated by
G+ Aic1202 =0,  @=CQi1, ¢ =Qi

for some choice of 4;_; /5 =~ f'(¢q) based on data Q;_1, Q.

Solve linear system for a; 151 Qi —Qi—1 =3, af_l/Qrf_l/Q.
Waves WY o= of /QTf_l /o Propagate with speeds ¥ | J20

are eigenvectors of 4;_; o,
are eigenvalues of A;_y/,.

D
Tie1/2

D
Si—1/2

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.2]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [FVMHP Sec. 15.3.2]

Approximate Riemann Solvers

Approximate true Riemann solution by set of waves consisting
of finite jumps propagating at constant speeds.

Local linearization:

Replace ¢; + f(q) = 0 by

qt +AqL = 07

where A = A(Ql» QT) ~ f/(Qave)-
Then decompose
g —q = o'l - M

to obtain waves WP = oP#? with speeds s? = \P.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011  [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [Sec. 15.3]

Approximate Riemann solvers

G+ Ai_1/2q: =0, @ =Qi-1, ¢ =0
Often Ai,l/g = f'(Qi—1/2) for some choice of Q;_ .

In general 4; 5 = A(qr, qv).

Roe conditions for consistency and conservation:

o Ag,a,) = f'(a7) as qe.ar — 0",
o A diagonalizable with real eigenvalues,

e For conservation in wave-propagation form,

A1 2(Qi = Qic1) = F(Qi) — f(Qi-1).

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.2]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [FVMHP Sec. 15.3.2]




Roe Solver

Solve ¢; + Ag, = 0 where A satisfies

Algr — @) = flar) = fla).
Then:
e Good approximation for weak waves (smooth flow)
e Single shock captured exactly:
f@) = f(@) = s(¢r — @) = g — q is an eigenvector of A

e Wave-propagation algorithm is conservative since
AiAQifl/QjL“‘ﬁAQi*l/? = Z 521/2)/‘}5:1/2 =4 szq/z'
Roe average A can be determined analytically for many

important nonlinear systems (e.g. Euler, shallow water).

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [Sec. 15.3]

Approximate solution to single wave

Suppose ¢, lies on some Hugoniot locus of ¢, (and vice versal):

hu = momentum
hu = momentum

? 3 4+ 5 6 7 I R T B
h= depth h'= depth

Qi—l/Q = %(Qi—l + Qi) Qj_l/g = Roe average
Straight lines are eigendirections of f’(Qi,l/z).

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Fig. 15.2]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [FVMHP Fig. 15.2]

Approximate Riemann Solvers

How to use?

One approach: determine Q* = state along z /¢t = 0,

Q" =Qi1+ Y WP, Fiyp=fQ),

p:sP<0

ATAQ = Fi_yj5 — f(Qi—1), ATAQ = f(Qi) — Fi_y)o.
Wave-propagation algorithm uses:

ATAQ = 37 WP ATAQ= Y SWR
p:sP<0 p:sP>0
Conservative only if A=AQ + ATAQ = f(Q:) — f(Qi—1).

This holds for Roe solver.
R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011  [Sec. 15.3]




Approximate Riemann solvers Notes:
For a scalar problem, we can easily satisfy the Roe condition
Ai19(Qi — Qi) = f(Qi) — F(Qi—1).
by choosing
i 1Q)— fQi)
=120 0.,
Qz - Ql—l
Thenr!  ,=1lands! ,,= A1y (scalarl).
Note: This is the Rankine-Hugoniot shock speed.
— shock waves are correct,
rarefactions replaced by entropy-violating shocks.
R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 12.2] R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 12.2]
Shallow water equations Notes:
h(z,t) = depth
u(z, t) = velocity (depth averaged, varies only with z)
Conservation of mass and momentum hu gives system of two
equations.
mass flux = hu,
momentum flux = (hu)u + p where p = hydrostatic pressure
ht + (hu)z =0
1
Jacobian matrix:
=] 0, 2 A= ut/gh
9= gh—u? 2u |’ a gn-
R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 13.1] R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 13.1]
Roe solver for Shallow Water Notes:

Given h;, v, h,, u,, define

B_hl"’hr a_mul+mur
2 Vhi +Vhr

Then
A = Jacobian matrix evaluated at this average state

satisfies

Algr —a) = flar) — f(a)-

Roe condition is satisfied,
Isolated shock modeled well,
Wave propagation algorithm is conservative,

High resolution methods obtained using corrections with
limited waves.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.3]

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011  [FVMHP Sec. 15.3.3]




Roe solver for Shallow Water Notes:
Given h;, v, h,, u,, define
E:hl+hr ﬂ:\/h»lul+\/hfur
2 Vi + Vhr
Eigenvalues of A = f/(g) are:
M=a—-¢ MN=da+eé &é=4/gh
Eigenvectors:
= 1 72 = 1
i—eé | a+e |
Examples in Clawpack 4.3 to be converted soon!
R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.3] R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.3]
Potential failure of linearized solvers Notes:
Consider shallow water with hy = h, and u, = —uy > 1.
Outflow away from interface —> small intermediate h,,.
/ | .
. N 7/
H VA HIERN A /
2 2 N\
z N z / \\\
[ A\
With w, = 0.8 With w, = 1.8
Roe h,, >0 Roe h,, <0
R.J. LeVeque, University of Washington AMath 574, March 7, 2011  [FVMHP Sec. 15.3.6] R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.6]
HLL Solver Notes:

Harten — Lax — van Leer (1983): Use only 2 waves with

s =minimum characteristic speed

52 =maximum characteristic speed

W=Q* —Qi, W =Q, —-Q
Conservation implies unique value for middle state Q*:

S WP = F(Q)) - £(Q0)
F(Q) = £(Q0) ~ °Qr +5'Qr

* __
= Q= sl _ 52

Choice of speeds:
e Max and min of expected speeds over entire problem,
e Max and min of eigenvalues of f'(Q,) and f'(Q,).

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011  [Sec. 15.3]




HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water)
that guarantees positivity.

Based on characteristic speeds and Roe averages:
8371/2 = min(min(A}, ;\f71/2)),
p
5?71/2 = mlz)atx(max()\?f+17 5\511/2)).

where
A is the pth eigenvalue of the Jacobian f/(Q;),

5‘?_1/2 is the pth eigenvalue using Roe average f'(Q;_1/2)

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington

AMath 574, March 7, 2011 [Sec. 15.3]




