AMath 574 February 23, 2011

Today:
¢ Nonlinear systems of conservation laws
e Shallow water equations
e Characteristics
e Rankine-Hugoniot condition, Hugoniot locus
e Solving Riemann problems

Friday:
o Integral curves, rarefaction waves

Reading: Chapter 13

R.J. LeVeque, University of Washington AMath 574, February 23, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 574, February 23, 2011

Shallow water equations

h(z,t) = depth
u(z, t) = velocity (depth averaged, varies only with z)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u + p where p = hydrostatic pressure
ht + (hu)z =0

(hu) + (hu2 + %ghz) =0

x

Jacobian matrix:
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Two-shock Riemann solution for shallow water

Initially by = hy = 1, w = —u, = 0.5 > 0

Solution at later time:

vertically intagrated pressure haight
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Two-shock Riemann solution for shallow water
Characteristic curves X'(t) = u(X(t),t) £ /gh(X(¢),t)

Slope of characteristic is constant in regions where ¢ is
constant. (Shown for g = 1 so \/gh = 1 everywhere initially.)

1-characteristics in the x-t plane 2-characteristics in the x-t plane
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Note that 1-characteristics impinge on 1-shock,

2-characteristics impinge on 2-shock.
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An isolated shock

If an isolated shock with left and right states ¢; and g, is
propagating at speed s

then the Rankine-Hugoniot condition must be satisfied:

flar) = fla) = s(ar — @)

For a system ¢ € IR™ this can only hold for certain pairs q;, g.:

For a linear system, f(q,) — f(a) = Agy — Aq = A(gr — @)
So ¢, — ¢, must be an eigenvector of f/'(¢q) = A.

A e R™™ = there will be m rays through ¢; in state space
in the eigen-directions, and ¢, must lie on one of these.

For a nonlinear system, there will be m curves through ¢; called
the Hugoniot loci.
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Hugoniot loci for shallow water

h . hu
qf{hu}’ f(q)7|:h’u2+%gh2:|.
Fix g« = (M, uy ).
What states ¢ can be connected to ¢. by an isolated shock?
The Rankine-Hugoniot condition s(¢ — ¢.) = f(¢) — f(g«) gives:
$(he — h) = hyuy — hu,

1
s(hatty — hu) = hou? — hu? + ig(hf — h?).

Two equations with 3 unknowns (h, u, s), SO we expect
1-parameter families of solutions.
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Hugoniot loci for shallow water

Rankine-Hugoniot conditions:
s(he — h) = hauy — hu,

1
s(hatty — hu) = hou? — hu? + ig(hf —h?).

For any h > 0 we can solve for

u(h):u*iﬁ (%*hﬁ) (hy — h)

s(h) = (haux — hu)/(he — h).

This gives 2 curves in h—hu space (one for +, one for —).
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Hugoniot loci for shallow water
For any h > 0 we have a possible shock state. Set
h=h.+a,

so that h = h, at o = 0, to obtain

1
hu = hauy + o |uy \/gh* + gga(?) + a/h*):| .

Hence we have

ol L ! asa—0
hu | | haus ot ghs + O(a) @ '

Close to ¢, the curves are tangent to eigenvectors of f/(g.)
Expected since f(q) — f(q«) = f'(a:)(q — @)
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Hugoniot loci for one particular g.

States that can be connected to ¢. by a “shock”

Hugoniot loci in phase plane
— 1-wave locus
2 — 2-wave locus
1
i

2
h = depth

momentum

hu=

Note: Might not satisfy entropy condition.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Sec. 13.7]

Notes:

R.J. LeVeque, University of Washington

AMath 574, February 23, 2011 [FVMHP Sec. 13.7]




Hugoniot loci for two different states

Hugoniot loci in phase plane

— 1-wave locus
— 2-wave locus

momentum

hu

3
h = depth

“All-shock” Riemann solution:

From ¢; along 1-wave locus to ¢,
From g, along 2-wave locus to ¢,
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All-shock Riemann solution Notes:
Hugoniot loci in phase plane
— 1-wave locus
2 — 2-wave locus
1
5
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h = depth
From ¢; along 1-wave locus to g,
From ¢, along 2-wave locus to ¢,
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All-shock Riemann solution Notes:

Hugoniot loci in phase plane

— 1-wave locus
— 2-wave locus

momentum

hu=

7
h = depth

From ¢; along 1-wave locus to g,
From ¢, along 2-wave locus to ¢,
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2-shock Riemann solution for shallow water
Given arbitrary states ¢; and ¢, we can solve the Riemann

problem with two shocks.

Choose ¢, so that g, is on the 1-Hugoniot locus of ¢
and also ¢,, is on the 2-Hugoniot locus of ¢;..

1
hm Ay

g1 1
/5 (hm + hl>'

Equate and solve single nonlinear equation for A,,.

This requires

U = Up+(hm — hy)

NCRINSY

and

U = Up— (P,
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Hugoniot loci for one particular g.

Green curves are contours of A!

momentum

hu

h:cjepth
Note: Increases in one direction only along blue curve.
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Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or
2-wave satisfying the R-H conditions:

1-shocks 2-shocks
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Solid portion: states that can be connected by shock satisfying
entropy condition.

Dashed portion: states that can be connected with R-H
condition satisfied but not the physically correct solution.
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2-shock Riemann solution for shallow water

Colliding with u; = —u,. > 0:

hu = momentum

\
\\\

285 s 2 es
h = depth

Entropy condition: Characteristics should impinge on shock:
! should decrease going from ¢; to ¢y,
A2 should increase going from ¢, to ¢,,,,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).
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Two-shock Riemann solution for shallow water
Characteristic curves X'(t) = u(X(t),t) £ /gh(X(t),t)
Slope of characteristic is constant in regions where q is
constant. (Shown for g = 1 so \/gh = 1 everywhere initially.)
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Note that 1-characteristics impinge on 1-shock,

2-characteristics impinge on 2-shock.
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2-shock Riemann solution for shallow water

Colliding with u; = —u,. > 0: Dam break:
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Entropy condition: Characteristics should impinge on shock:
! should decrease going from ¢; to g,,,
A2 should increase going from ¢, to ¢,,,,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).
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Entropy-violatiing Riemann solution for dam break
Characteristic curves X'(t) = u(X(t),t) £ /gh(X(t),t)

Slope of characteristic is constant in regions where ¢ is
constant.

1-characteristics in the x-t plane 2-characteristics in the x-t plane
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Note that 1-characteristics do not impinge on 1-shock,
2-characteristics impinge on 2-shock.
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The Riemann problem
Dam break problem for shallow water equations

he + (hu), =0

(hu) + (hu® + %ghz)z =0

Depth at time t = _0.00000000

Color is a passive tracer

Depth at time t = _0.20000000

25 Color is a passive tracer
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