AMath 574 February 23, 2011

Today:

¢ Nonlinear systems of conservation laws
Shallow water equations
Characteristics
Rankine-Hugoniot condition, Hugoniot locus
Solving Riemann problems

Friday:
e Integral curves, rarefaction waves

Reading: Chapter 13

R.J. LeVeque, University of Washington AMath 574, February 23, 2011



Shallow water equations

h(z,t) = depth
u(x,t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u + p where p = hydrostatic pressure
1
(hu)y + (hu2 + 2gh2> =0

Jacobian matrix:

f'a) = [gh2u2 ;u] A=ut\/gh.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011  [FVMHP Sec. 13.1]



Two-shock Riemann solution for shallow water

Initially h; = h, = 1,

Solution at later time:

wertically integrated pressura
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Two-shock Riemann solution for shallow water

Characteristic curves X'(t) = u(X (¢),t) + \/gh(X(t),t)

Slope of characteristic is constant in regions where ¢ is

constant.

1

1-characteristics in the x-t plane

(Shown for g = 1 so \/gh = 1 everywhere initially.)

2-characteristics in the x-t plane
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Note that 1-characteristics impinge on 1-shock,
2-characteristics impinge on 2-shock.

R.J. LeVeque, University of Washington

AMath 574, February 23, 2011 [FVMHP Fig. 13.8]



An isolated shock

If an isolated shock with left and right states ¢; and ¢, is
propagating at speed s

then the Rankine-Hugoniot condition must be satisfied:

flar) — fla) = s(@r — @)

For a system ¢ € R™ this can only hold for certain pairs ¢, g,

For a linear system, f(q;) — f(a) = Agy — Aq = A(gr — @)
So ¢, — ¢, must be an eigenvector of f/(q) = A.
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An isolated shock

If an isolated shock with left and right states ¢; and ¢, is
propagating at speed s

then the Rankine-Hugoniot condition must be satisfied:

flar) — fla) = s(ar —ar)

For a system ¢ € R™ this can only hold for certain pairs ¢, g,

For a linear system, f(q.) — f(a) = Agr — Aq = Algr — @)
So ¢, — ¢, must be an eigenvector of f/(q) = A.

A e R™™ — there will be m rays through ¢; in state space
in the eigen-directions, and ¢, must lie on one of these.
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An isolated shock

If an isolated shock with left and right states ¢; and ¢, is
propagating at speed s

then the Rankine-Hugoniot condition must be satisfied:

flar) — fla) = s(ar —ar)

For a system ¢ € R™ this can only hold for certain pairs ¢, g,

For a linear system, f(qr) — f(a) = Agr — Aq = Algr — @1)-
So ¢, — ¢, must be an eigenvector of f/(q) = A.

A e R™™ — there will be m rays through ¢; in state space
in the eigen-directions, and ¢, must lie on one of these.

For a nonlinear system, there will be m curves through ¢; called
the Hugoniot loci.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Fig. 13.7]



Hugoniot loci for shallow water

C_[:|:hhu:|7 f(q):[hUQiu%ghQ}

Fix g = (A, us).

What states ¢ can be connected to ¢, by an isolated shock?

The Rankine-Hugoniot condition s(q¢ — ¢«) = f(q) — f(gs) gives:
s(hs — h) = hyuy — hu,

1
s(hsuyx — hu) = h*uz — hu?® + §g(hz — hz).

Two equations with 3 unknowns (h, u, s), SO we expect
1-parameter families of solutions.
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Hugoniot loci for shallow water

Rankine-Hugoniot conditions:
s(hs — h) = hyus — hu,

1
s(hytts — hu) = hyu? — hu? + §g(hz — h?).

For any h > 0 we can solve for

u(h):u*i\/g (2—]?) (ha — )

s(h) = (hsus — hu)/(hs — h).

This gives 2 curves in h—hu space (one for +, one for —).

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Sec. 13.7]



Hugoniot loci for shallow water

For any h > 0 we have a possible shock state. Set
h=hs+ a,

so that h = h, at a = 0, to obtain

1
hu = hyus + o |uy = \/gh* + 5904(3 +a/hy)| .

R.J. LeVeque, University of Washington AMath 574, February 23, 2011  [FVMHP Sec. 13.7]



Hugoniot loci for shallow water

For any h > 0 we have a possible shock state. Set
h=h,+ a,

so that h = h, at a = 0, to obtain

hu = hyus +

1
Hence we have

hot | +a 1 asa — 0
hu | | haus s = /ghs + O(a) @ )

Close to ¢, the curves are tangent to eigenvectors of f/(q.)
Expected since f(q) — f(q«) ~ f'(q:)(q — g+)-

R.J. LeVeque, University of Washington AMath 574, February 23, 2011  [FVMHP Sec. 13.7]



Hugoniot loci for one particular ¢,

States that can be connected to ¢, by a “shock”

Hugoniot lociin phase plane

— 1-wave locus
2 ]
“ — 2-wave locus

momentum

hu =

[ i 7 3 1
h = depth

Note: Might not satisfy entropy condition.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Sec. 13.7]



Hugoniot loci for two different states

Hugoniot loci in phase plane

— 1-wave locus
— 2-wave locus ||

momentum

hu

[ 1 2 3 1
h = depth

“All-shock” Riemann solution:

From ¢; along 1-wave locus to ¢,
From ¢, along 2-wave locus to g,

R.J. LeVeque, University of Washington AMath 574, February 23, 2011

[FVMHP Sec. 13.7]



All-shock Riemann solution

Hugoniot lociin phase plane

— 1-wave locus
— 2-wave locus ||

momentum

Gm

hu

)
h =depth

From ¢; along 1-wave locus to ¢,
From ¢, along 2-wave locus to g,
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All-shock Riemann solution

Hugoniot lociin phase plane

— 1-wave locus
— 2-wave locus ||

momentum

hu =

)
h =depth

From ¢; along 1-wave locus to ¢,
From ¢, along 2-wave locus to g,

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Sec. 13.7]



2-shock Riemann solution for shallow water

Given arbitrary states ¢; and g,, we can solve the Riemann
problem with two shocks.

Choose ¢, so that ¢,, is on the 1-Hugoniot locus of ¢
and also ¢,, is on the 2-Hugoniot locus of ¢;..

This requires

1 1

and
1 1
Uy, = U— (i — By) g < + )

Equate and solve single nonlinear equation for A,,.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Sec. 13.7]



Hugoniot loci for one particular ¢,

Green curves are contours of Al

momentum

hu=

h:c;eplh
Note: Increases in one direction only along blue curve.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Sec. 13.7]



Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or
2-wave satisfying the R-H conditions:

1-shocks 2-shocks
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hu = momentum
hu = momentum

RS R
h = depth h = depth

Solid portion: states that can be connected by shock satisfying
entropy condition.

Dashed portion: states that can be connected with R-H
condition satisfied but not the physically correct solution.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Fig. 13.9]



2-shock Riemann solution for shallow water

Colliding with w; = —u,. > 0:

2|

: /

1

momentum

hu

N

R.J. LeVeque, University of Washington AMath 574, February 23, 2011  [FVMHP Fig. 13.10]



2-shock Riemann solution for shallow water

Colliding with w; = —u,. > 0:

\ . .-7/

hu = momentum

\
\

\
\
\

R
h = depth

Entropy condition: Characteristics should impinge on shock:
A should decrease going from ¢; to ¢,
A2 should increase going from g, to ¢,,,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).

R.J. LeVeque, University of Washington AMath 574, February 23, 2011  [FVMHP Fig. 13.10]



Two-shock Riemann solution for shallow water

Characteristic curves X'(t) = u(X (¢),t) + \/gh(X(t),t)

Slope of characteristic is constant in regions where ¢ is

constant.

1

1-characteristics in the x-t plane

(Shown for g = 1 so \/gh = 1 everywhere initially.)

2-characteristics in the x-t plane
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Note that 1-characteristics impinge on 1-shock,
2-characteristics impinge on 2-shock.

R.J. LeVeque, University of Washington

AMath 574, February 23, 2011 [FVMHP Fig. 13.8]



2-shock Riemann solution for shallow water

Colliding with w; = —u,. > 0:

Dam break:

momentum

hu
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2-shock Riemann solution for shallow water

Colliding with w; = —u,. > 0: Dam break:
Z B w /
/ oA |
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Entropy condition: Characteristics should impinge on shock:
A should decrease going from ¢; to ¢,
A2 should increase going from g, to ¢,,,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).

R.J. LeVeque, University of Washington AMath 574, February 23, 2011  [FVMHP Fig. 13.10]



Entropy-violatiing Riemann solution for dam break
Characteristic curves X'(t) = u(X (¢),t) + \/gh(X(t),t)

Slope of characteristic is constant in regions where ¢ is
constant.

1-characteristics in the x-t plane 2-characteristics in the x-t plane
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Note that 1-characteristics do not impinge on 1-shock,
2-characteristics impinge on 2-shock.

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Fig. 13.11]



The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.00000000

Color is a passive tracer

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Chap. 13]



The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.20000000

Color is a passive tracer

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Chap. 13]



The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.30000000

Color is a passive tracer

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Chap. 13]



The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.40000000

Color is a passive tracer

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Chap. 13]



The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.50000000

Color is a passive tracer

R.J. LeVeque, University of Washington AMath 574, February 23, 2011 [FVMHP Chap. 13]



	Lecture 16 - Feb 23, 2011
	Shallow water equations
	Hugoniot loci
	All-shock Riemann solution

