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Today:
e Entropy conditions and functions
e Lax-Wendroff theorem

Wednesday February 23:
e Nonlinear systems

Reading: Chapter 13
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation att = 1

with uy = —1 and u, = 2:
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qr + f(q)r = €Qqzz-

This selects a unique weak solution:
e Shock if f/(q) > f'(qr),
e Rarefaction if f'(¢;) < f'(g)-

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

f'(ae) > s> f'(qr), where s = (f(q) — f(a0))/(ar — q0)-

Note: This means characteristics must approach shock from
both sides as ¢ advances, not move away from shock!
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Approximate Riemann solvers

For nonlinear problems, computing the exact solution to each
Riemann problem may not be possible, or too expensive.

Often the nonlinear problem ¢; + f(g). = 0 is approximated by
G+ Aic1202 =0,  @=CQi1, ¢ =Qi

for some choice of 4;_; /5 =~ f'(¢q) based on data Q;_1, Q.

Solve linear system for a; 151 Qi —Qi—1 =3, af_l/Qrf_l/Q.
Waves WY o= of /QTf_l /o Propagate with speeds ¥ | J20

» .
Ti_1/2 @re eigenvectors of A;_1 s,

» .
S;_1 A€ eigenvalues of A;_y 5.
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Approximate Riemann solvers

q+ Ai71/2‘h‘ =0, @ =Qi-1, ¢ =Qi
Often /11;1/2 = f'(Q;—1/2) for some choice of Q;_s.

In general 4; /5 = A(qr, ar).

Roe conditions for consistency and conservation:
o Algr,qr) = f(¢7) @S qr0r — 4,
« A diagonalizable with real eigenvalues,

o For conservation in wave-propagation form,

Ai—12(Qi — Qim) = f(Qi) — f(Qi-1)-
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Approximate Riemann solvers

For a scalar problem, we can easily satisfy the Roe condition
Ail12(Qi = Qica) = F(Q) = F(Qia)-
by choosing
A F(Qi) — f(Qi-1)

AT T

Thenr! ,=1lands! = A;_1j5 (scalarl).
Note: This is the Rankine-Hugoniot shock speed.

— shock waves are correct,
rarefactions replaced by entropy-violating shocks.
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Weak solutions to Burgers’ equation

we+ (1), =0

- w =1, up =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (u + u,).

“Physically correct” rarefaction wave solution:

R T 0.0 0.5 1.0 15 2.0 2.5 3.0

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.13]

Notes:

R.J. LeVeque, University of Washington

AMath 574, February 14, 2011

[FVMHP Sec. 11.13]

Weak solutions to Burgers’ equation

we+ (), =0

. u =1, up, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (u + u,).

Entropy violating weak solution:

0—81 0 -0.5 0.0 0.5 1.0 15 2.0 2.5 3.0
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Weak solutions to Burgers’ equation

ut+(%u2)z:0, u =1, up, =2
Characteristic speed: v Rankine-Hugoniot speed: %(ug + up).

Another Entropy violating weak solution:

0'§1.0 -0.5 0.0 0.5 1.0 15 2.0 25 3.0
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Transonic rarefactions
Sonic point: us = 0 for Burgers’ since f/(0) = 0.
Consider Riemann problem data uy, = —0.5 < 0 < u, = 1.5.

In this case wave should spread in both directions:

— t=0
—_t=1
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Transonic rarefactions
Entropy-violating approximate Riemann solution:
1
s = —(u¢ +u,) =0.5.

2
Wave goes only to right, no update to cell average on left.

— t=0

— t=1
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Transonic rarefactions

If ug = —u, then Rankine-Hugoniot speed is 0:

Similar solution will be observed with Godunov’s method
if entropy-violating approximate Riemann solver used.

— t=0
— t=1
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation at¢ = 1

with uy = —1 and u, = 2:
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Approximate Riemann solver

At
Q= Q= 5 [ATAQi 10 + ATAQi 0]

For scalar advection m = 1, only one wave.
Wis1y2 = AQi—1y2 = Qi — Qi1 and s,_ 5 = u,

ATAQi_12 = $i12Wi-1/25
A+AQ2'—1/2 = Sj_l/QWi—l/Q'

For scalar nonlinear: Use same formulas with
Wi1j2 = AQ;_1j2 and s;_1 /9 = AF;_1/2/AQ;_1 /2

Need to modify these by an entropy fix in the trans-sonic
rarefaction case.
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Entropy fix

Q= QF — R [ATAQ 12 + A AQu]
Revert to the formulas
ATAQi—1/2 = f(gs) — f(Qi-1) left-going fluctuation
ATAQ;_1/2 = f(Qi) — f(gs) right-going fluctuation
if f/(Qi—1) <0< f'(Qi).
High-resolution method: still define wave W and speed s by

Wi—12 = Qi — Qi—1,

o { (f(Q:) — F(Qi=1))/(Qi — Qi—1)  if Qim1 # Qs
i-1/2 1'(Qi) if Qi1 =0Q;.
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Godunov flux for scalar problem Notes:
The Godunov flux function for the case f”(¢) > 0 is
f(Qic1)  if Qi-1 >qgsands >0
Flip=19 f(Qi) if Qi < gsand s <0
f(qs) if Qi1 < gs < Q.
i ‘ if Qi1 <Q;
- ) Qi-1=Q
é if Qi <Qi-1,
Q225 W Q=@
Here s = % is the Rankine-Hugoniot shock speed.
R.J. LeVeque, University of Washington AMath 574, February 14,2011 [FVMHP Sec. 12.1] R.J. LeVeque, University of Washington AMath 574, February 14,2011 [FVMHP Sec. 12.1]
Entropy-violating numerical solutions Notes:
Riemann problem for Burgers’ equation with ¢; = —1 and
qr = 2:
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Entropy (admissibility) conditions Notes:

We generally require additional conditions on a weak solution
to a conservation law, to pick out the unique solution that is
physically relevant.

In gas dynamics: entropy is constant along particle paths for
smooth solutions, entropy can only increase as a particle goes
through a shock.

Entropy functions: Function of ¢ that “oehaves like” physical
entropy for the conservation law being studied.

NOTE: Mathematical entropy functions generally chosen to
decrease for admissible solutions,
increase for entropy-violating solutions.
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Entropy functions Notes:
A scalar-valued function n : R™ — R is a convex function of ¢
if the Hessian matrix 1" (¢) with (i, j) element
0%n
" _
is positive definite for all ¢, i.e., satisfies
oI (q)v > 0 forall ¢, v e R™.
Scalar case: reduces to n”(q) > 0.
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Entropy functions Notes:
Entropy function: n:R™ — IR Entropy flux: ¢ :R™ —- R
chosen so that n(q) is convex and:
¢ 1)(q) is conserved wherever the solution is smooth,
(@)t +¥(q)z = 0.
e Entropy decreases across an admissible shock wave.
Weak form:
x2 T2
[t tnds < [ et ) o
x1 1
to t2
+ ¢(Q($l7t)) dt — ¢(Q(x27t))dt
i1 t1
with equality where solution is smooth.
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Entropy functions Notes:

How to find n and ¢ satisfying this?
(@) +¢(q)e =0
For smooth solutions gives
' (@)ae +¢'(q)gz = 0.
Since ¢, = —f(q)g, this is satisfied provided

V' (q) =n"(q)f (q)

Scalar: Can choose any convex 7(g) and integrate.

Example: Burgers’ equation, f’(u) = v and take n(u) = u?.
Then ¢/(u) = 2u? = Entropy function: 1(u) = 2u?.
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Weak solutions and entropy functions

The conservation laws

ug + (%u2>w =0 and (u?)t + (%us)x =0

both have the same quasilinear form
ug + uuy =0
but have different weak solutions, different shock speeds!

Entropy function: n(u) = u?.

A correct Burgers’ shock at speed s = %(uz + u,.) will have
total mass of 7(u) decreasing.
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Entropy functions

/m n(q(z,ta)) de < /12 n(q(z,t1)) dx
+ | " (g, 1)) di - / " W(g(wa, 1)) dt

comes from considering the vanishing viscosity solution:
4 + f(d)e = €dzy
Multiply by 7’ (¢¢) to obtain:
(gt + () = ' (¢°) 50
Manipulate further to get

n(q) + (0 = e(n'(¢)d5), — en” (a) (45)*.
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Entropy functions
Smooth solution to viscous equation satisfies
1(g)e +¥(q)e = e(n'(¢°)g5), — en”(a) (¢5)*.

Integrating over rectangle [x1, 2] X [t1, t2] gives

/:2 n(q(z,t2)) dx :/ (g (x, 1)) do

T1

7( g (e t)) dt — %(q%rl,t))dt)

Jt1 Jt1

+ e/t"z [77’(615(1’2715))‘1;@2715) — /(¢ (21,1) q;(zht)} dt

to To
—e [T [T @ s
t1 1

Let e — 0 to get result:
Term on third line goes to 0,
Term of fourth line is always < 0.
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Entropy functions

Weak form of entropy condition:

/Ooo /_oo [6en(q) + ¢21(q)] dxdtJr/_oo o(z,0)n(q(z,0)) dz > 0

for all ¢ € C4(R x R) with ¢(z,¢) > 0 for all z, ¢.

Informally we may write

n(q)¢ +(q)z <O0.
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Lax-Wendroff Theorem

Suppose the method is conservative and consistent with
Gt + f(q)z = 05

Fi_1y=F(Qi—1,Q:) with F(q,q) = f(q)
and Lipschitz continuity of F.

If a sequence of discrete approximations converge to a function
q(z,t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:
Does not guarantee a sequence converges (need stability).
Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.
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Sketch of proof of Lax-Wendroff Theorem

Multiply the conservative numerical method

At
1 n n n
Q=07 - H( 2 — Flap)

by ®7 to obtain

n At
7 Q; = P7Q; — qu)?( 111/2 - Fi7i1/2)-

This is true for all values of < and n on each grid.
Now sum over all ¢ and n > 0 to obtain

) 3] At 0 9
S Q- =S S WL = Py )
n=0 i=—o0

n=0 i=—o0

Use summation by parts to transfer differences to ® terms.
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Sketch of proof of Lax-Wendroff Theorem

Obtain analog of weak form of conservation law:

(o) (o) (I)n 1
AzAt | > <7> Q7
n=1i=—o0

+Z > ( e n)F”W} =-Az Y 2)Q).

n=0 i=—o0 1=—00

Consider on a sequence of grids with Az, At — 0.

Show that any limiting function must satisfy weak form of
conservation law.
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Analog of Lax-Wendroff proof for entropy

Show that the numerical flux function F leads to a
numerical entropy flux ¥

such that the following discrete entropy inequality holds:

Y05 T At n
Q) < n(Qf) — — [ 12— Vil

Then multiply by test function ®7*, sum and use summation by
parts to get discrete form of integral form of entropy condition.

= If numerical approximations converge to some function,
then the limiting function satisfies the entropy condition.
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Entropy consistency of Godunov’s method

For Godunov’s method, F(Q;—1,Q;) = f(QZ.W_l/Z)

where QXW is the constant value
along z;_,, in the Riemann solution.
n v
Let U7, = ¥(QiL45)
Discrete entropy inequality follows from Jensen’s inequality:

The value of n evaluated at the average value of ¢" is less than
or equal to the average value of n(¢"), i.e.,

1 Tity1/2 1 Tis1)2 By
n E/T y q"(z,tn41) do Am/ t n(q"(x, tns1)) da.
—i/2 Tio1/2
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