AMath 574 February 11, 2011

Today:
e Entropy conditions and functions
e Lax-Wendroff theorem

Wednesday February 23:
e Nonlinear systems

Reading: Chapter 13

R.J. LeVeque, University of Washington AMath 574, February 14, 2011



Entropy-violating numerical solutions

Riemann problem for Burgers’ equation att = 1

with vy = —1 and u, = 2:

‘Godunov with no entropy fix Godunov with entropy fix

High-resolution with entropy fix
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

Gt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(¢) > f'(qr),
e Rarefaction if f'(q;) < f'(qr).
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(¢) > f'(qr),
o Rarefaction if f'(¢;) < f'(qr)-

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

f'(qe) > s > f'(qr), where s = (f(qr) — f(a0))/(gr — a0)-
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(¢) > f'(qr),
o Rarefaction if f'(¢;) < f'(qr)-

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

f'(qe) > s > f'(qr), where s = (f(qr) — f(a0))/(gr — a0)-

Note: This means characteristics must approach shock from
both sides as ¢ advances, not move away from shock!
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Approximate Riemann solvers

For nonlinear problems, computing the exact solution to each
Riemann problem may not be possible, or too expensive.

Often the nonlinear problem ¢, + f(q), = 0 is approximated by

g+ Ai1/26z = 0, @=Qi-1, ¢&=0Q;

for some choice of A;_,/, ~ f'(q) based on data Q; 1, Q;.
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Approximate Riemann solvers

For nonlinear problems, computing the exact solution to each
Riemann problem may not be possible, or too expensive.

Often the nonlinear problem ¢, + f(q), = 0 is approximated by
g+ Ai1/26z = 0, @=Qi-1, ¢&=0Q;

for some choice of A;_,/, ~ f'(q) based on data Q; 1, Q;.

Solve linear system for a; 15 Qi — Qi—1 =3, af_l/Qrf_l/Q.

Waves W , Propagate with speeds s 120

P TP
—1/2 = ¥—1y2Ti-1y
are eigenvectors of A;_; s,
are eigenvalues of A;_ /.

p
z 1/2
Si— 1/2
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Approximate Riemann solvers

Q@+ Ai_1/2¢, =0, @ =Qi-1, ¢ =0Q;
Often /1@-,1/2 = f'(Q;-1/2) for some choice of Q;_1 /5.

In general A, 12 = Alar 4,).

R.J. LeVeque, University of Washington AMath 574, February 14,2011 [FVMHP Sec. 15.3.2]



Approximate Riemann solvers

q + Ai_1/2¢5 =0, @ =Qi-1, ¢ =0Q;
Often /1@'71/2 = f'(Q;-1/2) for some choice of Q;_1 /5.

In general A, 12 = Alar 4,).

Roe conditions for consistency and conservation:

o Alg.qr) = f'(¢*) @S qe.qr — ¢,
« A diagonalizable with real eigenvalues,

e For conservation in wave-propagation form,

A1 0(Qi — Qi) = F(Qi) = F(Qiz1).
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Approximate Riemann solvers

For a scalar problem, we can easily satisfy the Roe condition

Ai12(Qi = Qic1) = F(Qi) — f(Qin1).
by choosing

Ao f(Qi) — f(Qi—1)
2T = Qi
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Approximate Riemann solvers

For a scalar problem, we can easily satisfy the Roe condition

Ai12(Qi = Qic1) = F(Qi) — f(Qin1).
by choosing

Ao f(Qi) — f(Qi—1)
2T = Qi

Thenr! ,,=1ands} = A;_1/5 (scalarl).
Note: This is the Rankine-Hugoniot shock speed.

= shock waves are correct,
rarefactions replaced by entropy-violating shocks.
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Weak solutions to Burgers’ equation

ut—i-(%u?)x:(), ug =1, u, =2

Characteristic speed: u  Rankine-Hugoniot speed: 1 (u¢ + ;).

“Physically correct” rarefaction wave solution:
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Weak solutions to Burgers’ equation

ut—i-(%’u?)x:(), ug =1, u, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (us + u,).

Entropy violating weak solution:
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Weak solutions to Burgers’ equation

ut—i-(%’u?)x:(), ug =1, u, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (us + u,).

Another Entropy violating weak solution:
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Transonic rarefactions
Sonic point: us = 0 for Burgers’ since f/(0) = 0.
Consider Riemann problem data u, = —0.5 < 0 < u, = 1.5.

In this case wave should spread in both directions:
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Transonic rarefactions
Entropy-violating approximate Riemann solution:
5= }(Ug + u,) = 0.5.

2
Wave goes only to right, no update to cell average on left.
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Transonic rarefactions

If uy = —u, then Rankine-Hugoniot speed is 0:

Similar solution will be observed with Godunov’s method
if entropy-violating approximate Riemann solver used.
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation att = 1

with vy = —1 and u, = 2:

‘Godunov with no entropy fix Godunov with entropy fix

High-resolution with entropy fix
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Approximate Riemann solver

At
QI = Qn— [A AQi1j2 + ATAQi /0] -

For scalar advection m = 1, only one wave.
Wis12 = AQi_1/2 = Qi — Qi1 and Si—1/2 = U,

ATAQi—1/2 = 5,1 ;sWi-1/2,
A+AQ¢—1/2 = 5;1/2W1‘—1/2-

For scalar nonlinear: Use same formulas with
Wi—i/2 = AQi_1/2 and s;_1/o = AF;_5/AQ;_1/2-

Need to modify these by an entropy fix in the trans-sonic
rarefaction case.
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Entropy fix

At
QI = Qn— [»A AQi_1/2 +A” AQ1+1/2]

Revert to the formulas
ATAQ;_12 = f(gs) — f(Qi—1)  left-going fluctuation
ATAQ; 179 = f(Qi) — f(gs) right-going fluctuation

if f'(Qi—1) <0 < f'(Qs)-

High-resolution method: still define wave W and speed s by

Wi—1/2 = Qi — Qi-1,

o { (f(Qi) = f(Qi-1))/(Qi — Qi—1)  if Qi1 # Qs
i-1/2 f/(Qz) if Qz‘fl = Ql
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Godunov flux for scalar problem

4

The Godunov flux function for the case f”(q) > 0 is

{ f(Qi-1) if Qi_1>¢gsands >0

Qi) if Qi <gsands<0
f(qs) if Qi1 < qs < Qs

Qi,llngiélg@ f(q) if Qi—1 < Qj

If i < i—1s
Qigrlqnggi_lf(Q) Qi < Qi1

Firil/Z =

Here s = % is the Rankine-Hugoniot shock speed.
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation with ¢; = —1 and
qr = 2:

Godunov with no entropy fix Godunov with entropy fix
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Entropy (admissibility) conditions

We generally require additional conditions on a weak solution
to a conservation law, to pick out the unique solution that is
physically relevant.

In gas dynamics: entropy is constant along particle paths for
smooth solutions, entropy can only increase as a particle goes
through a shock.
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Entropy (admissibility) conditions

We generally require additional conditions on a weak solution
to a conservation law, to pick out the unique solution that is
physically relevant.

In gas dynamics: entropy is constant along particle paths for
smooth solutions, entropy can only increase as a particle goes
through a shock.

Entropy functions: Function of ¢ that “behaves like” physical
entropy for the conservation law being studied.
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Entropy (admissibility) conditions

We generally require additional conditions on a weak solution
to a conservation law, to pick out the unique solution that is
physically relevant.

In gas dynamics: entropy is constant along particle paths for
smooth solutions, entropy can only increase as a particle goes
through a shock.

Entropy functions: Function of ¢ that “behaves like” physical
entropy for the conservation law being studied.

NOTE: Mathematical entropy functions generally chosen to
decrease for admissible solutions,
increase for entropy-violating solutions.
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Entropy functions

A scalar-valued function n : R™ — IR is a convex function of ¢

if the Hessian matrix n”(q) with (4, j) element

0%n
is positive definite for all ¢, i.e., satisfies

an"(q)v >0 forall ¢, v e R™.

Scalar case: reduces to " (q) > 0.
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Entropy functions

Entropy function: »n:R™ — R Entropy flux: ¢ :R™ — R

chosen so that 7(q) is convex and:
¢ 7)(q) is conserved wherever the solution is smooth,

n(q)t + ¥ (q)z = 0.

e Entropy decreases across an admissible shock wave.
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Entropy functions

Entropy function: »n:R™ — R Entropy flux: ¢ :R™ — R

chosen so that 7(q) is convex and:
¢ 7)(q) is conserved wherever the solution is smooth,

n(q)t + ¥ (q)z = 0.

e Entropy decreases across an admissible shock wave.

Weak form:

T2 T2

| taeds < [ gt de
1 1

o (7 wtanyde— [ vt de

t1 t1
with equality where solution is smooth.
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Entropy functions
How to find  and v satisfying this?

(@)t +¥(q)z =0

For smooth solutions gives

n' (@) + V' (¢)gz = 0.
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Entropy functions
How to find  and v satisfying this?
n(@)t + ¥(q)z =0
For smooth solutions gives
7' (@)a + ¥ (q)gz = 0.

Since ¢ = —f'(q)q. this is satisfied provided

V'(q) =n'(q)f (q)
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Entropy functions
How to find  and v satisfying this?
n(@)t + ¥(q)z =0
For smooth solutions gives
7' (@)a + ¥ (q)gz = 0.

Since ¢ = —f'(q)q. this is satisfied provided

V'(q) =n'(q)f (q)

Scalar: Can choose any convex 7(q) and integrate.

Example: Burgers’ equation, f’(u) = v and take n(u) = u?.

Then ¢/'(u) = 2u> =  Entropy function: 1(u) = 2u3.

R.J. LeVeque, University of Washington AMath 574, February 14,2011 [FVMHP Sec. 11.4]



Weak solutions and entropy functions

The conservation laws

1, 2 2 3
ut+<2u )x:O and (u )t+<3u >x:0

both have the same quasilinear form
U + uuy =0

but have different weak solutions, different shock speeds!
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Weak solutions and entropy functions

The conservation laws

1, 2 2 3
ut+<2u )x:O and (u )t+<3u >x:0

both have the same quasilinear form

U + uuy =0
but have different weak solutions, different shock speeds!
Entropy function: n(u) = u?.

A correct Burgers’ shock at speed s = %(ue + u,) will have
total mass of n(u) decreasing.

R.J. LeVeque, University of Washington AMath 574, February 14,2011 [FVMHP Sec. 11.4]



Entropy functions

/ e ta)) d < / Y g t)) de
+ " (g t)) dt - / " Y(g(ent)) dt

comes from considering the vanishing viscosity solution:

a4 + f(q°)z = €q5,
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Entropy functions

/ e ta)) d < / Y g t)) de

[ gty di - / " Y(g(ent)) dt

t1 1

comes from considering the vanishing viscosity solution:

4 + f(d)e = €,
Multiply by 7’(¢¢) to obtain:

n(q)e +¥(q%)z = en' (¢°)ds-

R.J. LeVeque, University of Washington AMath 574, February 14, 2011
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Entropy functions

/ e ta)) d < / Y g t)) de

[ gty di - / " Y(g(ent)) dt

t1 1

comes from considering the vanishing viscosity solution:
4 + f(@)z = €dgy
Multiply by 7’(¢¢) to obtain:
n(q)e +¥(q%)z = en' (¢°) g
Manipulate further to get

n(q)e +1(q)e = (' (q)q5), — en” (4°) (¢5)°-
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Entropy functions
Smooth solution to viscous equation satisfies

n(g)e + (g2 = e(n'(¢9)qs) , — en” (¢°) (45)*.

Integrating over rectangle [z, 2] X [t1, 2] gives

/xz n(qe('r’t?)) dr = /gc2 n(qe(m,tl))dx

_ ( f w(qs(a:Q,t)l) dt—/j ¢(qé(x1,t))dt)

e / 0 @ 1) g5 (e £) — 1 (¢ (1, 1)) g (a0, 1)) dt

to
/ / 2 dx dt.
t] C

Let e — 0 to get result:
Term on third line goes to 0,
Term of fourth line is always < 0.
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Entropy functions

Weak form of entropy condition:

/OOO /_OO [0 (q) + dotp(q)] dxdt—i—/_oo é(z,0)n(q(z,0)) dz > 0

for all ¢ € C}(R x R) with ¢(x,t) > 0 for all z, ¢.
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Entropy functions

Weak form of entropy condition:

/OOO /_OO [0 (q) + dotp(q)] dxdt—i—/_oo é(z,0)n(q(z,0)) dz > 0

for all ¢ € C}(R x R) with ¢(x,t) > 0 for all z, ¢.

Informally we may write

n(q)e +1(q). <0.
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Lax-Wendroff Theorem

Suppose the method is conservative and consistent with
qt + f(q)m = 05

Fi 10 =F(Qi—1,Qi) with F(q,9) = f(q)
and Lipschitz continuity of F.

If a sequence of discrete approximations converge to a function
q(x,t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:
Does not guarantee a sequence converges (need stability).
Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.

R.J. LeVeque, University of Washington AMath 574, February 14,2011 [FVMHP Sec. 12.10]



Sketch of proof of Lax-Wendroff Theorem

Multiply the conservative numerical method

Qi+1:Qi _E( i+1/2 E; 1/2)

by @7 to obtain

At
PSP = QT — o (Flyyn = Fily o).
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Sketch of proof of Lax-Wendroff Theorem

Multiply the conservative numerical method

Qi+1:Qi _E( i+1/2 E; 1/2)

by @7 to obtain

At
PSP = QT — o (Flyyn = Fily o).

This is true for all values of i and n on each grid.
Now sum over all i and n > 0 to obtain

Z Z o7 QHH Q) = Z Z 3( zﬁ1/2_ﬂn—1/2)-

n=0 1=—o0 n=0 i=—o00

Use summation by parts to transfer differences to @ terms.
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Sketch of proof of Lax-Wendroff Theorem

Obtain analog of weak form of conservation law:

AzAt [Z > < q)n 1>QZ

n=1i=—o00

+Z Z < 4l ?)Ff_m} =—Az Y Q).

n=0 i=—00 i=—00

Consider on a sequence of grids with Ax, At — 0.

Show that any limiting function must satisfy weak form of
conservation law.
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Analog of Lax-Wendroff proof for entropy

Show that the numerical flux function F' leads to a
numerical entropy flux ¥

such that the following discrete entropy inequality holds:

At
n+1 n n n
(@) < m(Q7) — Az [‘I’i+1/2 - \Ijifl/Q} :
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Analog of Lax-Wendroff proof for entropy

Show that the numerical flux function F' leads to a
numerical entropy flux ¥

such that the following discrete entropy inequality holds:

At
n+1 n n n
(@) < m(Q7) — Az |:\Ili+l/2 - \Ijifl/Q} :

Then multiply by test function @7, sum and use summation by
parts to get discrete form of integral form of entropy condition.

= If numerical approximations converge to some function,
then the limiting function satisfies the entropy condition.
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Entropy consistency of Godunov’s method

For Godunov's method, F(Qi—1,Qi) = F(Q)_, )

where Q}_m is the constant value
along z;_y o in the Riemann solution.

Let UF" ), = %Z)(Q;{l/Z)
Discrete entropy inequality follows from Jensen’s inequality:

The value of n evaluated at the average value of ¢” is less than
or equal to the average value of 1(¢"), i.e.,

1 Tit1/2 o 1 Tit1/2 o
n A:c/z q"(z,tnt1)dr | < A:L’/x n(q" (2, tny1)) da.

i—1/2 i—1/2
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