AMath 574 February 11, 2011

Today:

Scalar nonlinear conservation laws
Shocks and rarefaction waves
Lax-Wendroff theorem

Entropy conditions

Monday:
e Numerical methods and entropy functions
e Start nonlinear systems

Reading: Chapters 12, 13
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Notes:
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Nonlinear scalar conservation laws

Burgers’ equation: u; + (3u?) = 0.

x

Quasilinear form: u; + uu, = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for v > 0:
Conservative: U = U — 2L (L((Ur)? — (U,)?))

ili mtl gy At 77
Quasilinear: U™ = U] — . UMU] = Ul ).

Ok for smooth solutions, not for shocks!
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Importance of conservation form

Solution to Burgers’ equation using conservative upwind:

Solution to Burgers’ equation using quasilinear upwind:
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Weak solutions depend on the conservation law
The conservation laws
1
Ut + <§u2)z =0

(u?), + (%u“)z =0

both have the same quasilinear form

and

U + uuy =0

but have different weak solutions,

different shock speeds!
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Weak solutions depend on the conservation law

1 lul —uj 1
ut+< 2) =0 = 5:7u25(w+ur).
x

whereas

These speeds are different in general = different weak
solutions.
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Conservation form

The method

At

1

Qi =qr - Ay Fivye = Flay)
is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

Az Qi = Az Z Qr — — F+oo —F_).

Note: an isolated shock must travel at the right speed!
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Lax-Wendroff Theorem Notes:
Suppose the method is conservative and consistent with
qt + f(Q)T = O:
Fio1j2 =F(Qi—1,Qi) with F(q,q) = f(q)
and Lipschitz continuity of F.
If a sequence of discrete approximations converge to a function
q(z,t) as the grid is refined, then this function is a weak
solution of the conservation law.
Note:
Does not guarantee a sequence converges (need stability).
Two sequences might converge to different weak solutions.
Also need to satisfy an entropy condition.
R.J. LeVeque, University of Washington AMath 574, February 11,2011 [FVMHP Sec. ] R.J. LeVeque, University of Washington AMath 574, February 11,2011 [FVMHP Sec. |
Entropy-violating numerical solutions Notes:
Riemann problem for Burgers’ equation att = 1
with uy = —1 and u, = 2:
R.J. LeVeque, University of Washington AMath 574, February 11,2011 [FVMHP Sec. 12.3] R.J. LeVeque, University of Washington AMath 574, February 11,2011 [FVMHP Sec. 12.3]
Non-uniqueness of weak solutions Notes:

For scalar problem, any jump allowed with speed:

fag) — fla)

S= .
qr —q

So evenif f'(q,) < f'(¢q) the integral form of cons. law is
satisfied by a discontinuity propogating at the R-H speed.

In this case there is also a rarefaction wave solution.
In fact, infinitely many weak solutions.

Which one is physically correct?
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Weak solutions to Burgers’ equation

we+ (1), =0

- w =1, up =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (u + u,).

“Physically correct” rarefaction wave solution:

R T 0.0 0.5 1.0 15 2.0 2.5 3.0
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Weak solutions to Burgers’ equation

we+ (), =0

. u =1, up, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (u + u,).

Entropy violating weak solution:

0—81 0 -0.5 0.0 0.5 1.0 15 2.0 2.5 3.0
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Weak solutions to Burgers’ equation

ut+(%u2)z:0, u =1, up, =2
Characteristic speed: v Rankine-Hugoniot speed: %(ug + up).

Another Entropy violating weak solution:

0'§1.0 -0.5 0.0 0.5 1.0 15 2.0 25 3.0
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

q: + f(Q)z = €Gzg-

This selects a unique weak solution:
e Shock if f’(ql) > f/(%")a
e Rarefaction if f'(q;) < f'(gv).

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if
f'(ae) > s> f'(ar), where s = (f(qr) — f(ae))/(ar — qe)-

Note: This means characteristics must approach shock from
both sides as ¢ advances, not move away from shock!
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Upwind wave-propagation algorithm

At _
Qi =Qf - Ax [ATAQ; 12+ A" AQi 1] -
Recall that for a linear system, s? = A\ and waves WP are
eigenvectors.

m

ATAQi 1y =Y (W)W,
p=1

ATAQ; 12 = Z(/\p)+Wf,1/27
p=1
For scalar advection m = 1, only one wave.
Wis12 = AQi_1j2 = Qi — Qi—1 and s = u,

ATAQi_172 = u Wi_y2,
ATAQi 1y =u"™Wi_y1)p.
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Upwind wave-propagation algorithm

At —
Q;’.H'l = Q;n — E [.AJFAQi,l/Q + A AQ@'+1/2} .
Define
ATAQ;1/2 = Fi_1) — f(Qi—1) left-going fluctuation
ATAQ; 15 = f(Qi) — Fi_1»  right-going fluctuation

Then this reduces to:

n . At
QI =Qr — Az [Fip1/2 — Fioapo) -
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Riemann problem for scalar nonlinear problem

gt + f(q)» = 0 with data

S a if <0
Q(I’O)_{ g ifxz>0

Piecewise constant with a single jump discontinuity.

For Burgers’ or traffic flow with quadratic flux, the Riemann
solution consists of:

 Shock wave if f'(q;) > f'(a),
o Rarefaction wave if f'(q;) < f'(g).

Five possible cases:

NNy
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Riemann problem for scalar convex flux

qt + f(q)= = 0 with f”(¢) of one sign, so f’(g) is monotone.
Then f is called a convex flux function.
Then there is at most one point ¢s where f'(gs) = 0.

qs is called the sonic point or stagnation point.

5 possible cases:

Case 3: f'(¢1) <0< f'(qr), SO g5 lies between ¢; and g;..
This is a trans-sonic rarefaction.
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Upwind wave-propagation algorithm

At _
Q' =qr - Ar [AJFAQifl/Q +A AQz‘H/ﬂ .
ATAQ;_1/2 = Fi_1/2 — f(Qi—1) left-going fluctuation

ATAQ;_1/2 = f(Qi) — F;_1/2 right-going fluctuation
For high-resolution method, we also need to define a wave W

and speed s,

Wi_1/2 = Qi — Qi-1,

o { (f(Qi) — f(Qi—1))/(Qs — Qi—1)  if Qi1 # @y
-1/ Qi) if Qi1 =Qs.
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Godunov flux for scalar problem

The Godunov flux function for the case f”(¢) > 0 is
if Qi1 >qsands>0

f(Qi1)
Flyp=19 Qi) if Q;<gsands<0

f(gs) if Qic1 <qs <Qs.

i ‘ if Qi1 <Q;

- ) Qi-1=Q
B é if Qi <Qi-1,
o225, J@)  TQi<Qia

Here s = % is the Rankine-Hugoniot shock speed.
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Approximate Riemann solver

At
Q= Q= 5 [ATAQi 10 + ATAQi 0]

For scalar advection m = 1, only one wave.
Wis1y2 = AQi—1y2 = Qi — Qi1 and s,_ 5 = u,

ATAQi—1/2
ATAQ; 12

=81 2Wi-1/2;
= 5?—1/2Wi—1/2‘

For scalar nonlinear: Use same formulas with

Wi1j2 = AQ;_1j2 and s;_1 /9 = AF;_1/2/AQ;_1 /2

Need to modify these by an entropy fix in the trans-sonic
rarefaction case.
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Entropy fix

At

n+1 __ n__ ="

Revert to the formulas
ATAQ;—1/2 = f(gs) — [(Qi1) left-going fluctuation
AYAQ; 12 = f(Q:) — f(gs) right-going fluctuation
if f(Qi—1) <0< f(Qi)-
For high-resolution method, can still define wave W and speed
s by
Wi_12 = Qi — Qi-1,

o { (f(Qi) — f(Qi—1))/(Qs — Qi—1)  if Qi1 # Qy
2T Q) if Qi1 = Q.

ATAQi 12+ A" AQj11 2] -
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation with ¢, = —1 and

Q’I‘ZQ:

Godunov with no entropy fix

Godunov vith entropy fx

= E o T

High-resolution with entropy fix
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