AMath 574 February 11, 2011

Today:
e Scalar nonlinear conservation laws
e Shocks and rarefaction waves
¢ Lax-Wendroff theorem
e Entropy conditions

Monday:
e Numerical methods and entropy functions
e Start nonlinear systems

Reading: Chapters 12, 13

R.J. LeVeque, University of Washington AMath 574, February 11, 2011



Nonlinear scalar conservation laws

Burgers’ equation: u; + (3u?)_=0.

Quasilinear form: u; + uug, = 0.

These are equivalent for smooth solutions, not for shocks!
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Nonlinear scalar conservation laws

Burgers’ equation: u; + (3u?) = 0.

xT

Quasilinear form: u; + uug, = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0:
Conservative: U™ = U — &L (L(UM)? - (U™,)?))
Quasilinear: U™ = Uy — 2Lur(ur — U y).

K3 K

Ok for smooth solutions, not for shocks!
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Importance of conservation form

Solution to Burgers’ equation using conservative upwind:

0 o1 o0z 03 04 05 06 07 08 09 1

Solution to Burgers’ equation using quasilinear upwind:

% o1 o0z 03 04 05 o0s o7 os os 1
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Weak solutions depend on the conservation law
The conservation laws
1
U + <2U2>z =0

(u?), + <§u3>x =0

both have the same quasilinear form

and

u + uu, =0

but have different weak solutions,

different shock speeds!
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Weak solutions depend on the conservation law

2u§—u§‘

2 2 3)
(u )t <3u - § 3 U — U

These speeds are different in general — different weak
solutions.
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Conservation form

The method

Qi = Q ( +1/2 Fz‘—l/Q)

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:
AmZQ:&l A:EZQ” F+oo —F_ ).

Note: an isolated shock must travel at the right speed!
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Lax-Wendroff Theorem

Suppose the method is conservative and consistent with
qt + f(q)m = 05

Fi 10 =F(Qi—1,Qi) with F(q,9) = f(q)
and Lipschitz continuity of F.

If a sequence of discrete approximations converge to a function
q(x,t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:
Does not guarantee a sequence converges (need stability).
Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation att = 1

with vy = —1 and u, = 2:

‘Godunov with no entropy fix Godunov with entropy fix

High-resolution with entropy fix
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Non-uniqueness of weak solutions

For scalar problem, any jump allowed with speed:

flar) = fla)

§= "
qr — q1

So even if f'(¢,) < f'(q) the integral form of cons. law is
satisfied by a discontinuity propogating at the R-H speed.

In this case there is also a rarefaction wave solution.
In fact, infinitely many weak solutions.

Which one is physically correct?
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Weak solutions to Burgers’ equation

ut—i-(%u?)x:(), ug =1, u, =2

Characteristic speed: u  Rankine-Hugoniot speed: 1 (u¢ + ;).

“Physically correct” rarefaction wave solution:
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Weak solutions to Burgers’ equation

ut—i-(%’u?)x:(), ug =1, u, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (us + u,).

Entropy violating weak solution:
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Weak solutions to Burgers’ equation

ut—i-(%’u?)x:(), ug =1, u, =2

Characteristic speed: v Rankine-Hugoniot speed: 1 (us + u,).

Another Entropy violating weak solution:
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

Gt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(¢) > f'(qr),
e Rarefaction if f'(q;) < f'(qr).
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(¢) > f'(qr),
o Rarefaction if f'(¢;) < f'(qr)-

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

f'(qe) > s > f'(qr), where s = (f(qr) — f(a0))/(gr — a0)-
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Vanishing viscosity solution
We want ¢(z, t) to be the limit as ¢ — 0 of solution to

qt + f(Q):L" = €qxz-

This selects a unique weak solution:

e Shock if f'(¢) > f'(qr),
o Rarefaction if f'(¢;) < f'(qr)-

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

f'(qe) > s > f'(qr), where s = (f(qr) — f(a0))/(gr — a0)-

Note: This means characteristics must approach shock from
both sides as ¢ advances, not move away from shock!
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Upwind wave-propagation algorithm

QI =qQp - [«4 AQi1j2 + ATAQi1y0] -
Recall that for a linear system, sP = AP and waves WP are

eigenvectors.

m

ATAQ;_1 /2 = Z(/\p) 4% 1720

p=1
m

ATAQi 1y =Y (W)WY,
p=1
For scalar advection m = 1, only one wave.
Wit12=AQ;12 = Qi — Qi—1and s = u,

ATAQi—12 = u" Wi_y)9,
A+AQ¢—1/2 = U+Wz‘—1/2-
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Upwind wave-propagation algorithm

At
QI = Qn— [»A AQi—1/2 + ATAQ 11 )2] -

Define
ATAQi_1)2 = Fi_1/2 — f(Qi-1) left-going fluctuation
ATAQ;_1/2 = f(Qi) — F;_1/> right-going fluctuation

Then this reduces to:

At
Qn+1 QF — A [F¢+1/2 - Fi71/2] .
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Riemann problem for scalar nonlinear problem

gt + f(q). = 0 with data

Ja if x <0

Piecewise constant with a single jump discontinuity.

For Burgers’ or traffic flow with quadratic flux, the Riemann
solution consists of:

e Shock wave if f'(q;) > f'(¢),
o Rarefaction wave if f'(¢;) < f'(gr).

4

R.J. LeVeque, University of Washington AMath 574, February 11,2011  [FVMHP Sec. 12.1]

Five possible cases:




Riemann problem for scalar convex flux

q: + f(q). = 0 with f”(q) of one sign, so f’(q) is monotone.
Then f is called a convex flux function.
Then there is at most one point ¢s where f/(¢s) = 0.

gs is called the sonic point or stagnation point.

5 possible cases:

v

Case 3: f'(¢1) <0< f'(¢r), SO g5 lies between ¢; and ¢, .
This is a trans-sonic rarefaction.
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Upwind wave-propagation algorithm

At
QI = Qn— [»A AQi_1/2 +A” AQ2+1/2]

ATAQi_1)2 = Fi_1/2 — f(Qi-1) left-going fluctuation
ATAQ;_1/2 = f(Qi) — F;_1/2 right-going fluctuation

For high-resolution method, we also need to define a wave W
and speed s,

Wi—12 = Qi — Qi-1,

6 1 — { (f(Q:i) = f(Qi-1))/(Qi — Qi—1)  If Qi1 # Qs
i-1/2 f,(Qz) if Qi—l = Qz

R.J. LeVeque, University of Washington AMath 574, February 11,2011 [FVMHP Sec. 12.2]



Godunov flux for scalar problem

4

The Godunov flux function for the case f”(q) > 0 is

{ f(Qi-1) if Qi_1>¢gsands >0

Qi) if Qi <gsands<0
f(qs) if Qi1 < qs < Qs

Qi,llngiélg@ f(q) if Qi—1 < Qj

If i < i—1s
Qigrlqnggi_lf(Q) Qi < Qi1

Firil/Z =

Here s = % is the Rankine-Hugoniot shock speed.
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Approximate Riemann solver

At
QI = Qn— [A AQi1j2 + ATAQi /0] -

For scalar advection m = 1, only one wave.
Wis12 = AQi_1/2 = Qi — Qi1 and Si—1/2 = U,

ATAQi—1/2 = 5,1 ;sWi-1/2,
A+AQ¢—1/2 = 5;1/2W1‘—1/2-

For scalar nonlinear: Use same formulas with
Wi—i/2 = AQi_1/2 and s;_1/o = AF;_5/AQ;_1/2-

Need to modify these by an entropy fix in the trans-sonic
rarefaction case.
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Entropy fix
n+1 n At + -
Qi =@ - [ATAQi_1/2 + A" AQ 11 2] -
Revert to the formulas
ATAQ;—1/2 = flas) — f(Qi-1) left-going fluctuation
ATAQ;_1/2 = f(Q:) — f(gs) right-going fluctuation
if f(Qi—1) <0< f(Qi)

For high-resolution method, can still define wave W and speed
s by

Wi_12 = Qi — Qi—1,

o = { (f(Qi) — f(Qi—1))/(Qi — Qi—1) 1 Qi1 # Qs
o f(@i) it Qi1 = Q.
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation with ¢; = —1 and
qr = 2:

Godunov with no entropy fix Godunov with entropy fix
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