
AMath 574 February 11, 2011

Today:
• Scalar nonlinear conservation laws
• Shocks and rarefaction waves
• Lax-Wendroff theorem
• Entropy conditions

Monday:
• Numerical methods and entropy functions
• Start nonlinear systems

Reading: Chapters 12, 13

R.J. LeVeque, University of Washington AMath 574, February 11, 2011



Nonlinear scalar conservation laws

Burgers’ equation: ut +
(

1
2u

2
)
x

= 0.

Quasilinear form: ut + uux = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0:

Conservative: Un+1
i = Un

i − ∆t
∆x

(
1
2((Un

i )2 − (Un
i−1)2)

)
Quasilinear: Un+1

i = Un
i − ∆t

∆xU
n
i (Un

i − Un
i−1).

Ok for smooth solutions, not for shocks!
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Importance of conservation form

Solution to Burgers’ equation using conservative upwind:
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Solution to Burgers’ equation using quasilinear upwind:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

R.J. LeVeque, University of Washington AMath 574, February 11, 2011 [FVMHP Sec. 11.12]



Weak solutions depend on the conservation law

The conservation laws

ut +
(

1
2
u2

)
x

= 0

and (
u2
)
t
+
(

2
3
u3

)
x

= 0

both have the same quasilinear form

ut + uux = 0

but have different weak solutions,

different shock speeds!
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Weak solutions depend on the conservation law

ut +
(

1
2
u2

)
x

= 0 =⇒ s =
1
2
u2

r − u2
`

ur − ul
=

1
2

(u` + ur).

whereas (
u2
)
t
+
(

2
3
u3

)
x

= 0 =⇒ s =
2
3
u3

r − u3
`

ur − u`
.

These speeds are different in general =⇒ different weak
solutions.
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Conservation form

The method

Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+1/2 − F

n
i−1/2)

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

∆x
∑

i

Qn+1
i = ∆x

∑
i

Qn
i −

∆t
∆x

(F+∞ − F−∞).

Note: an isolated shock must travel at the right speed!
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Lax-Wendroff Theorem
Suppose the method is conservative and consistent with
qt + f(q)x = 0,

Fi−1/2 = F(Qi−1, Qi) with F(q̄, q̄) = f(q̄)

and Lipschitz continuity of F .

If a sequence of discrete approximations converge to a function
q(x, t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:

Does not guarantee a sequence converges (need stability).

Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation at t = 1

with u` = −1 and ur = 2:
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Non-uniqueness of weak solutions

For scalar problem, any jump allowed with speed:

s =
f(qr)− f(ql)

qr − ql
.

So even if f ′(qr) < f ′(ql) the integral form of cons. law is
satisfied by a discontinuity propogating at the R-H speed.

In this case there is also a rarefaction wave solution.

In fact, infinitely many weak solutions.

Which one is physically correct?
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Weak solutions to Burgers’ equation

ut +
(

1
2u

2
)
x

= 0, u` = 1, ur = 2

Characteristic speed: u Rankine-Hugoniot speed: 1
2(u` + ur).

“Physically correct” rarefaction wave solution:

R.J. LeVeque, University of Washington AMath 574, February 11, 2011 [FVMHP Sec. 11.13 ]



Weak solutions to Burgers’ equation

ut +
(
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2u

2
)
x

= 0, u` = 1, ur = 2

Characteristic speed: u Rankine-Hugoniot speed: 1
2(u` + ur).

Entropy violating weak solution:
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Weak solutions to Burgers’ equation

ut +
(

1
2u

2
)
x

= 0, u` = 1, ur = 2

Characteristic speed: u Rankine-Hugoniot speed: 1
2(u` + ur).
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Vanishing viscosity solution

We want q(x, t) to be the limit as ε→ 0 of solution to

qt + f(q)x = εqxx.

This selects a unique weak solution:
• Shock if f ′(ql) > f ′(qr),
• Rarefaction if f ′(ql) < f ′(qr).

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if
f ′(q`) > s > f ′(qr), where s = (f(qr)− f(q`))/(qr − q`).

Note: This means characteristics must approach shock from
both sides as t advances, not move away from shock!
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Upwind wave-propagation algorithm

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

Recall that for a linear system, sp = λp and wavesWp are
eigenvectors.

A−∆Qi−1/2 =
m∑

p=1

(λp)−Wp
i−1/2,

A+∆Qi−1/2 =
m∑

p=1

(λp)+Wp
i−1/2,

For scalar advection m = 1, only one wave.
Wi−1/2 = ∆Qi−1/2 = Qi −Qi−1 and s = u,

A−∆Qi−1/2 = u−Wi−1/2,

A+∆Qi−1/2 = u+Wi−1/2.
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Upwind wave-propagation algorithm

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

Define

A−∆Qi−1/2 = Fi−1/2 − f(Qi−1) left-going fluctuation

A+∆Qi−1/2 = f(Qi)− Fi−1/2 right-going fluctuation

Then this reduces to:

Qn+1
i = Qn

i −
∆t
∆x

[
Fi+1/2 − Fi−1/2

]
.
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Riemann problem for scalar nonlinear problem

qt + f(q)x = 0 with data

q(x, 0) =
{
ql if x < 0
qr if x ≥ 0

Piecewise constant with a single jump discontinuity.

For Burgers’ or traffic flow with quadratic flux, the Riemann
solution consists of:

• Shock wave if f ′(ql) > f ′(qr),
• Rarefaction wave if f ′(ql) < f ′(qr).

Five possible cases:
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Riemann problem for scalar convex flux

qt + f(q)x = 0 with f ′′(q) of one sign, so f ′(q) is monotone.

Then f is called a convex flux function.

Then there is at most one point qs where f ′(qs) = 0.

qs is called the sonic point or stagnation point.

5 possible cases:

Case 3: f ′(ql) < 0 < f ′(qr), so qs lies between ql and qr.
This is a trans-sonic rarefaction.
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Upwind wave-propagation algorithm

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

A−∆Qi−1/2 = Fi−1/2 − f(Qi−1) left-going fluctuation

A+∆Qi−1/2 = f(Qi)− Fi−1/2 right-going fluctuation

For high-resolution method, we also need to define a waveW
and speed s,

Wi−1/2 = Qi −Qi−1,

si−1/2 =
{

(f(Qi)− f(Qi−1))/(Qi −Qi−1) if Qi−1 6= Qi

f ′(Qi) if Qi−1 = Qi.
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Godunov flux for scalar problem

The Godunov flux function for the case f ′′(q) > 0 is

Fn
i−1/2 =


f(Qi−1) if Qi−1 > qs and s > 0
f(Qi) if Qi < qs and s < 0
f(qs) if Qi−1 < qs < Qi.

=


min

Qi−1≤q≤Qi

f(q) if Qi−1 ≤ Qi

max
Qi≤q≤Qi−1

f(q) if Qi ≤ Qi−1,

Here s = f(Qi)−f(Qi−1)
Qi−Qi−1

is the Rankine-Hugoniot shock speed.
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Approximate Riemann solver

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

For scalar advection m = 1, only one wave.
Wi−1/2 = ∆Qi−1/2 = Qi −Qi−1 and si−1/2 = u,

A−∆Qi−1/2 = s−i−1/2Wi−1/2,

A+∆Qi−1/2 = s+
i−1/2Wi−1/2.

For scalar nonlinear: Use same formulas with
Wi−1/2 = ∆Qi−1/2 and si−1/2 = ∆Fi−1/2/∆Qi−1/2.

Need to modify these by an entropy fix in the trans-sonic
rarefaction case.
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Entropy fix

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

Revert to the formulas

A−∆Qi−1/2 = f(qs)− f(Qi−1) left-going fluctuation

A+∆Qi−1/2 = f(Qi)− f(qs) right-going fluctuation

if f ′(Qi−1) < 0 < f ′(Qi).

For high-resolution method, can still define waveW and speed
s by

Wi−1/2 = Qi −Qi−1,

si−1/2 =
{

(f(Qi)− f(Qi−1))/(Qi −Qi−1) if Qi−1 6= Qi

f ′(Qi) if Qi−1 = Qi.
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Entropy-violating numerical solutions

Riemann problem for Burgers’ equation with ql = −1 and
qr = 2:
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