AMath 586 / ATM 581
Homework #3
Due Thursday, April 30, 2015

Homework is due to Canvas by 11:00pm PDT on the due date.

To submit, see https://canvas.uw.edu/courses/962872/assignments/

Problem 1

Let g(x) = 0 represent a system of s nonlinear equations in s unknowns, so z € R® and ¢ : R®* — R”.
A vector T € R® is a fized point of g(x) if

T = g(2). (1)
One way to attempt to compute Z is with fized point iteration: from some starting guess z°, compute
2t = g(a7) (2)

for j=0, 1, ....
(a) Show that if there exists a norm || - || such that g(«) is Lipschitz continuous with constant L < 1
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in a neighborhood of Z, then fixed point iteration converges from any starting value in this
neighborhood. Hint: Subtract equation (1) from (2).

Suppose g(x) is differentiable and let ¢’(x) be the sx s Jacobian matrix. Show that if the condition
of part (a) holds then p(¢'(Z)) < 1, where p(A) denotes the spectral radius of a matrix.

Consider a predictor-corrector method (see Section 5.9.4) consisting of forward Euler as the pre-
dictor and backward Euler as the corrector, and suppose we make IN correction iterations, i.e.,
we set

U =U"+kf(U")

forj=0,1, ..., N—1
Uit = U™ + kf(U7)
end

Urtt =¥,

Note that this can be interpreted as a fixed point iteration for solving the nonlinear equation
Un+1 =" + k_f(Un+1)

of the backward Euler method. Since the backward Euler method is implicit and has a stability
region that includes the entire left half plane, as shown in Figure 7.1(b), one might hope that this
predictor-corrector method also has a large stability region.

Plot the stability region Sy of this method for N = 2, 5, 10, 20 (perhaps using plotS.m from
the webpage) and observe that in fact the stability region does not grow much in size.

Using the result of part (b), show that the fixed point iteration being used in the predictor-
corrector method of part (c¢) can only be expected to converge if |kA| < 1 for all eigenvalues A of
the Jacobian matrix f’(u).

Based on the result of part (d) and the shape of the stability region of Backward Euler, what do
you expect the stability region Sy of part (c) to converge to as N — 0o?
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Problem 2

Use the Boundary Locus method to plot the stability region for the TR-BDF2 method (8.6). You
can use the Matlab script makeplotS.m from the book website, or a Python script as illustrated in
$AM586/codes/notebook3. ipynb (To view online, see http://faculty.washington.edu/rjl/classes/
amb86s2015/codes.html)

Observe that the method is A-stable and show that it is also L-stable.

Problem 3

The goal of this problem is to write a very simple adaptive time step ODE solver based on the Bogacki—
Shampine Runge—Kutta method. This is a third-order accurate 4-stage method that also produces a
second-order accurate approximation each time step that can be used for error estimation. (This is the
method used in the Matlab routine ode23.)

See, e.g. http://en.wikipedia.org/wiki/Bogacki-Shampine_method for a description and the coef-
ficients.

Note that it appears to require 4 evaluations of f each time step, but the last one needed in one step
can be re-used in the next step. You should take advantage of this to reduce it to 3 new f-evaluations
each step.

In lecture, I discussed the method (5.42) in which U "+l s used for the next time step and is second-
order accurate, while U1 is “first-order accurate”, which means the 1-step error is O(k?), and this is
what is approximated by the difference |U™Tt — UnH1|.

For the Bogacki-Shampine method, the corresponding difference |[U"*1 — U "+ will be approximately
equal to the 1-step error of the second order method, so we expect it to have the form k, 7" ~ C,k2,
where k,, is the time step just used in the nth step, and C), is a constant that will depend on how
smooth the solution is near time t,,. After each time step, we can estimate this by

~ ‘Un+1 _ Un+1|
Cn ~ k—g.

n
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If we were simply using the second order method and trying to achieve an absolute error less than some
€ over the time interval tg <t < T, then we would want to choose our time steps so that
7" < €/(T —to)

Then if we assume the method is behaving stably and we estimate the global error at time T by the
sum of the one-step errors, this is roughly

S bl < (ko) g

Convince yourself that this suggests choosing the next time step as

(o) )

Note that we have already taken a step with time step k,, in order to approximate C,,, so the simplest
approach is just to use (4) to define our next time step kn41, with C), estimated from (3). (A more
sophisticated method would go back and re-take a smaller step if the estimate indicates we took a step
that was too large.)

Note that the error estimate is based on the second-order method, but the value we take for our next
step is U™, which we hope is even more accurate.
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Implement this idea, with the following steps:

e First implement a function that takes a single time step with the B—S method and confirm that it
is working, e.g. if you apply it to ' = —u for a single step of size k the errors behave as expected
when you reduce k.

e Then implement a fixed time step method based on this and verify that the method is third-order
accurate.

e Implement an adaptive time version and test it on various problems where you know the solution.

Note: You will need to choose a time step for the first step. To keep it simple, just use kg = 107%.
You should also set some maximum step size that’s allowed since there may be times when the error
estimate happens to be very small. Take this to be ke, = 10€'/3.

Note: Do not expect this method to work all that well. The main point is to get some idea of how
adaptive time stepping works and some of the issues that make it difficult to write a general purpose
code of this nature. There is software available that does a very good job (e.g. in Matlab or SciPy, and
the codes these are built on), but a lot of work has gone into tuning these.

Once your code is working, try it on problems of the form

u'(t) = Mu — (1)) +v'(t) (5)
where v(t) is a desired exact solution and the initial data is chosen as u(0) = v(0).

In particular, try the following. Produce some sample plots of the solutions and also plots of the error
and step size used as functions of ¢, as illustrated in the figures below.

(a) Exact solution
v(t) = cos(t)

for 0 <t <10 and A = —1. Try different tolerances € in the range 1072 to 10719,

(b) Try the above problem with more negative A, e.g. A = —100. What happens if € is large enough
that kgee > kstap? Does the method go unstable?

(¢) Exact solution
v(t) = cos(t) + exp (—80(t — 2)?) ,

for 0 <t <4 and A = —1. The Gaussian gives a region where the solution is much more rapidly
varying and smaller time steps are required.

You might get something as shown in the figure below (obtained from my code with ¢ = 1072).
But the results are quite sensitive to small changes in the algorithm, so don’t expect to match
this exactly!
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