Conservation Laws and Finite Volume Methods

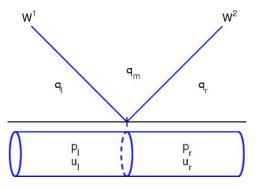
AMath 586 Spring Quarter, 2015

Godunov and limiter methods

Randall J. LeVeque Applied Mathematics University of Washington

Riemann Problem for acoustics

Waves propagating in x–t space:



Left-going wave $\mathcal{W}^1=q_m-q_l$ and right-going wave $\mathcal{W}^2=q_r-q_m$ are eigenvectors of A.

The Riemann problem for advection

The Riemann problem for the advection equation $q_t + uq_x = 0$ with

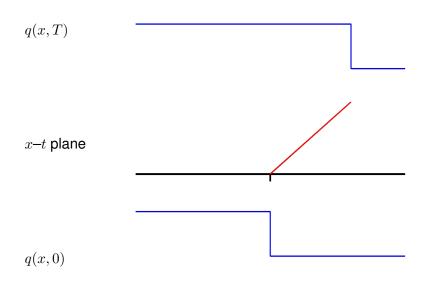
$$q(x,0) = \left\{ \begin{array}{ll} q_l & \quad \text{if} \ x < 0 \\ q_r & \quad \text{if} \ x \geq 0 \end{array} \right.$$

has solution

$$q(x,t) = q(x - ut, 0) = \begin{cases} q_l & \text{if } x < ut \\ q_r & \text{if } x \ge ut \end{cases}$$

consisting of a single wave of strength $\mathcal{W}^1=q_r-q_l$ propagating with speed $s^1=u$.

Riemann solution for advection



Finite differences vs. finite volumes

Finite difference Methods

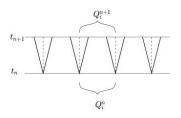
- Pointwise values $Q_i^n \approx q(x_i, t_n)$
- · Approximate derivatives by finite differences
- Assumes smoothness

Finite volume Methods

- Approximate cell averages: $Q_i^n pprox rac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x,t_n) \, dx$
- Integral form of conservation law,

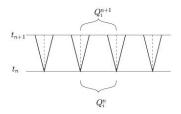
$$\frac{\partial}{\partial t} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x,t) \, dx = f(q(x_{i-1/2},t)) - f(q(x_{i+1/2},t))$$

leads to conservation law $q_t + f_x = 0$ but also directly to numerical method.



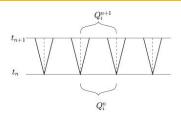
1. Solve Riemann problems at all interfaces, yielding waves $\mathcal{W}^p_{i-1/2}$ and speeds $s^p_{i-1/2}$, for $p=1,\ 2,\ \dots,\ m$.

Riemann problem: Original equation with piecewise constant data.



Then either:

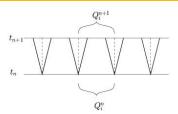
1. Compute new cell averages by integrating over cell at t_{n+1} ,



Then either:

- 1. Compute new cell averages by integrating over cell at t_{n+1} ,
- 2. Compute fluxes at interfaces and flux-difference:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} [F_{i+1/2}^n - F_{i-1/2}^n]$$



Then either:

- 1. Compute new cell averages by integrating over cell at t_{n+1} ,
- 2. Compute fluxes at interfaces and flux-difference:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} [F_{i+1/2}^n - F_{i-1/2}^n]$$

3. Update cell averages by contributions from all waves entering cell:

$$\begin{split} Q_i^{n+1} &= Q_i^n - \frac{\Delta t}{\Delta x}[\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2}] \end{split}$$
 where $\mathcal{A}^\pm \Delta Q_{i-1/2} = \sum_{i=1}^m (s_{i-1/2}^p)^\pm \mathcal{W}_{i-1/2}^p.$

R. J. LeVegue

AMath 586

First-order REA Algorithm

1 Reconstruct a piecewise constant function $\tilde{q}^n(x, t_n)$ defined for all x, from the cell averages Q_i^n .

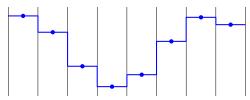
$$\tilde{q}^n(x,t_n) = Q_i^n$$
 for all $x \in \mathcal{C}_i$.

- **2** Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^n(x,t_{n+1})$ a time Δt later.
- 3 Average this function over each grid cell to obtain new cell averages

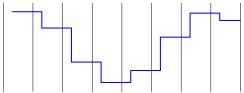
$$Q_i^{n+1} = \frac{1}{\Delta x} \int_{\mathcal{C}_i} \tilde{q}^n(x, t_{n+1}) dx.$$

First-order REA Algorithm

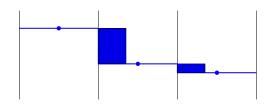
Cell averages and piecewise constant reconstruction:



After evolution:



Cell update



The cell average is modified by

$$\frac{u\Delta t \cdot (Q_{i-1}^n - Q_i^n)}{\Delta x}$$

So we obtain the upwind method

$$Q_{i}^{n+1} = Q_{i}^{n} - \frac{u\Delta t}{\Delta x}(Q_{i}^{n} - Q_{i-1}^{n}).$$

Second-order REA Algorithm

1 Reconstruct a piecewise linear function $\tilde{q}^n(x, t_n)$ defined for all x, from the cell averages Q_i^n .

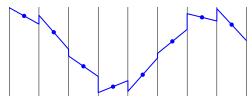
$$\tilde{q}^n(x,t_n) = Q_i^n + \sigma_i^n(x-x_i)$$
 for all $x \in \mathcal{C}_i$.

- **2** Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^n(x,t_{n+1})$ a time Δt later.
- 3 Average this function over each grid cell to obtain new cell averages

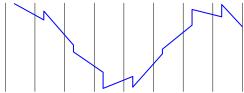
$$Q_i^{n+1} = \frac{1}{\Delta x} \int_{\mathcal{C}_i} \tilde{q}^n(x, t_{n+1}) dx.$$

Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:



After evolution:



Choice of slopes

$$\tilde{Q}^n(x,t_n) = Q_i^n + \sigma_i^n(x-x_i)$$
 for $x_{i-1/2} \le x < x_{i+1/2}$.

Applying REA algorithm gives:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n) - \frac{1}{2}\frac{u\Delta t}{\Delta x}(\Delta x - \bar{u}\Delta t)(\sigma_i^n - \sigma_{i-1}^n)$$

Choice of slopes:

Centered slope:
$$\sigma_i^n = \frac{Q_{i+1}^n - Q_{i-1}^n}{2\Delta x}$$
 (Fromm)

Upwind slope:
$$\sigma_i^n = \frac{Q_i^n - Q_{i-1}^n}{\Delta x}$$
 (Beam-Warming)

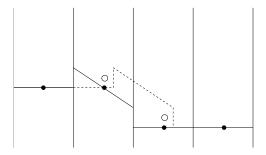
Downwind slope:
$$\sigma_i^n = \frac{Q_{i+1}^n - Q_i^n}{\Delta x}$$
 (Lax-Wendroff)

R. J. LeVeque AMath 586

Oscillations

Any of these slope choices will give oscillations near discontinuities.

Ex: Lax-Wendroff:



High-resolution methods

Want to use slope where solution is smooth for "second-order" accuracy.

Where solution is not smooth, adding slope corrections gives oscillations.

Limit the slope based on the behavior of the solution.

$$\sigma_i^n = \left(\frac{Q_{i+1}^n - Q_i^n}{\Delta x}\right) \Phi_i^n.$$

 $\Phi = 1 \implies \text{Lax-Wendroff},$

 $\Phi = 0 \implies \text{upwind}.$

Minmod slope

$$\mathsf{minmod}(a,b) = \left\{ \begin{array}{ll} a & \quad \mathsf{if} \ |a| < |b| \ \mathsf{and} \ ab > 0 \\ b & \quad \mathsf{if} \ |b| < |a| \ \mathsf{and} \ ab > 0 \\ 0 & \quad \mathsf{if} \ ab \leq 0 \end{array} \right.$$

Slope:

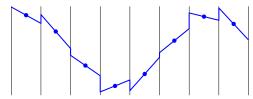
$$\begin{split} \sigma_i^n &= & \operatorname{minmod}((Q_i^n - Q_{i-1}^n)/\Delta x, \ (Q_{i+1}^n - Q_i^n)/\Delta x) \\ &= & \left(\frac{Q_{i+1}^n - Q_i^n}{\Delta x}\right) \Phi(\theta_i^n) \end{split}$$

where

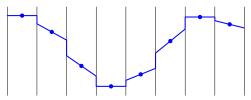
$$\begin{array}{rcl} \theta_i^n & = & \frac{Q_i^n - Q_{i-1}^n}{Q_{i+1}^n - Q_i^n} \\ \Phi(\theta) & = & \mathsf{minmod}(\theta, 1) \end{array}$$

Piecewise linear reconstructions

Lax-Wendroff reconstruction:



Minmod reconstruction:



TVD Methods

Total variation:

$$TV(Q) = \sum_{i} |Q_i - Q_{i-1}|$$

For a function, $TV(q) = \int |q_x(x)| dx$.

A method is Total Variation Diminishing (TVD) if

$$TV(Q^{n+1}) \le TV(Q^n).$$

If Q^n is monotone, then so is Q^{n+1} .

No spurious oscillations generated.

Gives a form of stability useful for proving convergence, also for nonlinear scalar conservation laws.

TVD REA Algorithm

1 Reconstruct a piecewise linear function $\tilde{q}^n(x,t_n)$ defined for all x, from the cell averages Q_i^n .

$$\tilde{q}^n(x,t_n) = Q_i^n + \sigma_i^n(x-x_i)$$
 for all $x \in \mathcal{C}_i$

with the property that $TV(\tilde{q}^n) \leq TV(Q^n)$.

- **2** Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^n(x, t_{n+1})$ a time k later.
- 3 Average this function over each grid cell to obtain new cell averages

$$Q_i^{n+1} = \frac{1}{\Delta x} \int_{\mathcal{C}_i} \tilde{q}^n(x, t_{n+1}) \, dx.$$

Note: Steps 2 and 3 are always TVD.

Some popular limiters

Linear methods:

$$upwind: \quad \phi(\theta) = 0$$

$${\bf Lax\text{-}Wendroff}: \quad \phi(\theta)=1$$

$$\text{Beam-Warming}: \quad \phi(\theta) = \theta$$

Fromm :
$$\phi(\theta) = \frac{1}{2}(1+\theta)$$

High-resolution limiters:

$$\mathsf{minmod}: \quad \phi(\theta) = \mathsf{minmod}(1,\theta)$$

superbee:
$$\phi(\theta) = \max(0, \min(1, 2\theta), \min(2, \theta))$$

MC:
$$\phi(\theta) = \max(0, \min((1+\theta)/2, 2, 2\theta))$$

van Leer :
$$\phi(\theta) = \frac{\theta + |\theta|}{1 + |\theta|}$$

R. J. LeVeque

AMath 586

Extensions

These methods extend naturally to:

Linear systems of equations:

Solve Riemann problem to decompose each jump into waves, Apply same technique to each wave.

Nonlinear problems:

Use approximate Riemann solver to decompose jump, Apply same technique to each wave.

Multidimensional problems:

Waves propagate normal to interfaces, Can add in transverse propagation.