
AMath 483/583 — Lecture 9

This lecture:

• Multi-file Fortran codes
• Makefiles

Reading:

• class notes: Makefiles

• Software Carpentry lectures on Make

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

http://faculty.washington.edu/rjl/classes/am583s2013/notes/makefiles.html
http://software-carpentry.org/4_0/make/

Dependency checking

Makefiles give a way to recompile only the parts of the code
that have changed.

Also used for checking dependencies in other build systems,

e.g. creating figures, running latex, bibtex, etc. to construct a
manuscript.

More modern build systems are available, e.g. SCons, which
allows expressing dependencies and build commands in
Python.

But make (or gmake) are still widely used.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

http://www.scons.org/

Dependency checking

Makefiles give a way to recompile only the parts of the code
that have changed.

Also used for checking dependencies in other build systems,

e.g. creating figures, running latex, bibtex, etc. to construct a
manuscript.

More modern build systems are available, e.g. SCons, which
allows expressing dependencies and build commands in
Python.

But make (or gmake) are still widely used.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

http://www.scons.org/

Fortran code with 3 units

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Split code into 3 separate files...

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Splitting Fortran codes into files

Compile all three and link together into single executable:

$ gfortran main.f90 sub1.f90 sub2.f90 \
-o main.exe

Run the executable:

$./main.exe
In main program
In sub1
In sub2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Splitting Fortran codes into files

Can split into separate compile....

$ gfortran -c main.f90 sub1.f90 sub2.f90

$ ls *.o
main.o sub1.o sub2.o

... and link steps:

$ gfortran main.o sub1.o sub2.o -o main.exe

$./main.exe > output.txt

Note: Redirected output to a text file.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Splitting Fortran codes into files

Advantage: If we modify sub2.f90 to print "Now in sub2" we
only need to recompile this piece:

$ gfortran -c sub2.f90

$ gfortran main.o sub1.o sub2.o -o main.exe

$./main.exe
In main program
In sub1
Now in sub2

When working on a big code (e.g. 100,000 lines split between
200 subroutines) this can make a big difference!

Use of Makefiles greatly simplifies this.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Splitting Fortran codes into files

Advantage: If we modify sub2.f90 to print "Now in sub2" we
only need to recompile this piece:

$ gfortran -c sub2.f90

$ gfortran main.o sub1.o sub2.o -o main.exe

$./main.exe
In main program
In sub1
Now in sub2

When working on a big code (e.g. 100,000 lines split between
200 subroutines) this can make a big difference!

Use of Makefiles greatly simplifies this.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Makefiles

A common way of automating software builds and other
complex tasks with dependencies.

A Makefile is itself a program in a special language.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Makefiles

$ cd $UWHPSC/codes/fortran/multifile1
$ rm -f *.o *.exe # remove old versions

$ make main.exe
gfortran -c main.f90
gfortran -c sub1.f90
gfortran -c sub2.f90
gfortran main.o sub1.o sub2.o -o main.exe

Uses commands for making main.exe.

note: First had to make all the .o files.
Then executed the rule to make main.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Structure of a Makefile

Typical element in the simple Makefile:

target: dependencies
<TAB> command(s) to make target

Important to use tab character, not spaces!!
Warning: Some editors replace tabs with spaces!

Typing “make target” means:
1 Make sure all the dependencies are up to date

(those that are also targets)
2 If target is older than any dependency,

recreate it using the specified commands.

These rules are applied recursively!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Structure of a Makefile

Typical element in the simple Makefile:

target: dependencies
<TAB> command(s) to make target

Important to use tab character, not spaces!!
Warning: Some editors replace tabs with spaces!

Typing “make target” means:
1 Make sure all the dependencies are up to date

(those that are also targets)
2 If target is older than any dependency,

recreate it using the specified commands.

These rules are applied recursively!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Make examples

$ rm -f *.o *.exe

$ make sub1.o
gfortran -c sub1.f90

$ make main.o
gfortran -c main.f90

$ make main.exe
gfortran -c sub2.f90
gfortran main.o sub1.o sub2.o -o main.exe

Note: Last make required compiling sub2.f90
but not sub1.f90 or main.f90.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Age of dependencies

The last modification time of the file is used.

$ ls -l sub1.*
-rw-r--r-- 1 rjl staff 111 Apr 18 16:05 sub1.f90
-rw-r--r-- 1 rjl staff 936 Apr 18 16:56 sub1.o

$ make sub1.o
make: ‘sub1.o’ is up to date.

$ touch sub1.f90; ls -l sub1.f90
-rw-r--r-- 1 rjl staff 111 Apr 18 17:10 sub1.f90

$ make main.exe
gfortran -c sub1.f90
gfortran main.o sub1.o sub2.o -o main.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Makefiles

First version of Makefile has 3 rules that are very similar

Replace these with a pattern rule...

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Implicit rules

General rule to make the .o file from .f90 file:

Making main.exe requires main.o sub1.o sub2.o
to be up to date.

Rather than a rule to make each one separately,
the implicit rule (lines 9-10) is used for all three.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Specifying a different makefile

To use a makefile with a different name than Makefile:

$ make sub1.o -f Makefile2
gfortran -c sub1.f90

The rules in Makefile2 will be used.

The directory $UWHPSC/codes/fortran/multifile1
contains several sample makefiles.

See class notes: Makefiles for a summary.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

http://faculty.washington.edu/rjl/classes/am583s2013/notes/makefiles.html

Implicit rules

We have to repeat the list of .o files twice:

Simplify and reduce errors by defining a macro.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Makefile variables or macros

By convention, all-caps names are used for Makefile macros.

Note that to use OBJECTS we must write $(OBJECTS).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Makefile variables

Here we have added for the name of the Fortran command and
for compile flags and linking flags.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Makefile variables

$ rm -f *.o *.exe
$ make -f Makefile4

gfortran -O3 -c main.f90
gfortran -O3 -c sub1.f90
gfortran -O3 -c sub2.f90
gfortran -O3 main.o sub1.o sub2.o -o main.exe
./main.exe > output.txt

Can specify variables on command line:

$ rm -f *.o *.exe
$ make main.exe FFLAGS=-g -f Makefile4

gfortran -g -c main.f90
gfortran -g -c sub1.f90
gfortran -g -c sub2.f90
gfortran -g main.o sub1.o sub2.o -o main.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Phony targets — don’t create files

Note: No dependencies, so always do commands

$ make clean -f Makefile5
rm -f main.o sub1.o sub2.o main.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Common Makefile error

Using spaces instead of tab...

If we did this in the clean commands, we’d get:

$ make clean -f Makefile5

Makefile5:14: *** missing separator. Stop.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

make help

echo means print out the string.
@echo means print out the string but don’t print the command.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Fancier things are possible...

This gives:

$ make test -f Makefile6
Sources are: fullcode.f90 main.f90 sub1.f90 sub2.f90
Objects are: fullcode.o main.o sub1.o sub2.o

Note this found fullcode.f90 too!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Other makefile examples

The html version of the class notes are created by typing

make html # OR: make latex

in the the directory $UWHPSC/notes/

See the Makefile in that directory.

Each .rst (ReStructured Text) file is turned into an html file
corresponding to one webpage.

Changing one .rst file and redoing make html only
“recompiles” this one file.

But try modifying the configuration file conf.py and all files will
be regenerated.

Note: This is not a great example because the dependency
checking is actually done by the program sphinx-build.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Other makefile examples

The html version of the class notes are created by typing

make html # OR: make latex

in the the directory $UWHPSC/notes/

See the Makefile in that directory.

Each .rst (ReStructured Text) file is turned into an html file
corresponding to one webpage.

Changing one .rst file and redoing make html only
“recompiles” this one file.

But try modifying the configuration file conf.py and all files will
be regenerated.

Note: This is not a great example because the dependency
checking is actually done by the program sphinx-build.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

Other makefile examples

The html version of the class notes are created by typing

make html # OR: make latex

in the the directory $UWHPSC/notes/

See the Makefile in that directory.

Each .rst (ReStructured Text) file is turned into an html file
corresponding to one webpage.

Changing one .rst file and redoing make html only
“recompiles” this one file.

But try modifying the configuration file conf.py and all files will
be regenerated.

Note: This is not a great example because the dependency
checking is actually done by the program sphinx-build.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 9

	Lecture 9
	Fortran — multi-file
	Makefiles

