
AMath 483/583 — Lecture 8

This lecture:

• Fortran subroutines and functions

• Arrays

• Dynamic memory

Reading:

• class notes: Fortran Arrays
• class notes: Fortran Subroutines and Functions
• class notes: gfortran flags

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Fortran functions and subroutines

For now, assume we have a single file filename.f90 that
contains the main program and also any functions or
subroutines needed.

Later we will see how to split into separate files.

Will also discuss use of modules.

Functions take some input arguments and return a single value.

Usage: y = f(x) or z = g(x,y)

Should be declared as external with the type of value returned:

real(kind=8), external :: f

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Fortran functions

Prints out: z = 4.00000000000000
R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Fortran subroutines

Subroutines have arguments, each of which might be for input
or output or both.

Usage: call sub1(x,y,z,a,b)

Can specify the intent of each argument, e.g.

real(kind=8), intent(in) :: x,y
real(kind=8), intent(out) :: z
real(kind=8), intent(inout) :: a,b

specifies that x, y are passed in and not modified,
z may not have a value coming in but will be set by sub1,
a, b are passed in and may be modified.

After this call, z, a, b may all have changed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Fortran subroutines

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Fortran subroutines

A version that takes an array as input and squares each value:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Array operations in Fortran

Fortran 90 supports some operations on arrays...

! $UWHPSC/codes/fortran/vectorops.f90
program vectorops

implicit none
real(kind=8), dimension(3) :: x, y

x = (/10.,20.,30./) ! initialize
y = (/100.,400.,900./)

print *, "x = "
print *, x

print *, "x**2 + y = "
print *, x**2 + y ! componentwise

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Array operations in Fortran

! $UWHPSC/codes/fortran/vectorops.f90
! continued...

print *, "x*y = "
print *, x*y ! = (x(1)y(1), x(2)y(2), ...)

print *, "sqrt(y) = "
print *, sqrt(y) ! componentwise

print *, "dot_product(x,y) = "
print *, dot_product(x,y) ! scalar product

end program vectorops

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Array operations in Fortran — Matrices

! $UWHPSC/codes/fortran/arrayops.f90
program arrayops

implicit none
real(kind=8), dimension(3,2) :: a
...
! create a as 3x2 array:
A = reshape((/1,2,3,4,5,6/), (/3,2/))

Note:
• Fortran is case insensitive: A = a

• Reshape fills array by columns, so

A =

1 4
2 5
3 6

 .

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Array operations in Fortran — Matrices

! $UWHPSC/codes/fortran/arrayops.f90 (continued)
real(kind=8), dimension(3,2) :: a
real(kind=8), dimension(2,3) :: b
real(kind=8), dimension(3,3) :: c
integer :: i

print *, "a = "
do i=1,3

print *, a(i,:) ! i’th row
enddo

b = transpose(a) ! 2x3 array

c = matmul(a,b) ! 3x3 matrix product

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Array operations in Fortran — Matrices

! $UWHPSC/codes/fortran/arrayops.f90 (continued)
real(kind=8), dimension(3,2) :: a
real(kind=8), dimension(2) :: x
real(kind=8), dimension(3) :: y

x = (/5,6/)
y = matmul(a,x) ! matrix-vector product
print *, "x = ",x
print *, "y = ",y

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Linear systems in Fortran

There is no equivalent of the Matlab backslash operator for
solving a linear system Ax = b (b = A\b)

Must call a library subroutine to solve a system.

Later we will see how to use LAPACK for this.

Note: Under the hood, Matlab calls LAPACK too!

So does NumPy.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Array storage

Rank 1 arrays have a single index, for example:

real(kind=8) :: x(3)
real(kind=8), dimension(3) :: x

are equivalent ways to define x with elements
x(1), x(2), x(3).

You can also specify a different starting index:

real(kind=8) :: x(0:2), y(4:6), z(-2:0)

These are all arrays of length 3 and this would be a valid
assignment:

y(5) = z(-2)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Multi-dimensional array storage

Memory can be thought of linear, indexed by a single address.

A one-dimensional array of length N will generally occupy N
consecutive memory locations: 8N bytes for floats.

A two-dimensional array (e.g. matrix) of size m× n will require
mn memory locations.

Might be stored by rows, e.g. first row, followed by second row,
etc.

This what’s done in Python or C, as suggested by notation:
A = [[10,20,30], [40,50,60]]

Or, could be stored by columns, as done in Fortran!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Multi-dimensional array storage

A =

[
10 20 30
40 50 60

]

Apy = reshape(array([10,20,30,40,50,60]), (3,2))
Afort = reshape((/10,20,30,40,50,60/), (/3,2/))

Suppose the array storage starts at memory location 3401.

In Python or Fortran, the elements will be stored in the order:

loc 3401 Apy[0,0] = 10 Afort(1,1) = 10
loc 3402 Apy[0,1] = 20 Afort(2,1) = 40
loc 3403 Apy[0,2] = 30 Afort(1,2) = 20
loc 3404 Apy[1,0] = 40 Afort(2,2) = 50
loc 3405 Apy[1,1] = 50 Afort(1,3) = 30
loc 3406 Apy[1,2] = 60 Afort(2,3) = 60

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Aside on np.reshape

The np.reshape method can go through data in either order:

>>> v = linspace(10,60,6)

>>> v
array([10., 20., 30., 40., 50., 60.])

>>> reshape(v, (2,3)) # order=’C’ by default
array([[10., 20., 30.],

[40., 50., 60.]])

>>> reshape(v, (2,3), order=’F’)
array([[10., 30., 50.],

[20., 40., 60.]])

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Aside on np.reshape

The np.reshape method can go through data in either order:

>>> A
array([[10., 20., 30.],

[40., 50., 60.]])

>>> A.reshape(3,2) # order=’C’ by default
array([[10., 20.],

[30., 40.],
[50., 60.]])

>>> A.reshape((3,2),order=’F’)
array([[10., 50.],

[40., 30.],
[20., 60.]])

Note: reshape can be called as function or method of A...

>>> reshape(A, (3,2), order=’F’)
R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Aside on np.flatten

The np.flatten method converts an N-dim array to a
1-dimensional one:

>>> A = np.array([[10.,20,30],[40,50,60]])
>>> A
array([[10., 20., 30.],

[40., 50., 60.]])

>>> A.flatten() # Default is ’C’
array([10., 20., 30., 40., 50., 60.])

>>> A.flatten(’F’) # Fortran ordering
array([10., 40., 20., 50., 30., 60.])

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Memory management for arrays

Often a program needs to be written to handle arrays whose
size is not known until the program is running.

Fortran 77 approaches:
• Allocate arrays large enough for any application,
• Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will
probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Memory allocation

real(kind=8) dimension(:), allocatable :: x
real(kind=8) dimension(:,:), allocatable :: a

allocate(x(10))
allocate(a(30,10))

! use arrays...

! then clean up:
deallocate(x)
deallocate(a)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Memory allocation

If you might run out of memory, use optional argument stat to
return the status...

real(kind=8), dimension(:,:), allocatable :: a

allocate(a(30000,10000), stat=alloc_error)

if (alloc_error /= 0) then
print *, "Insufficient memory"
stop
endif

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Passing arrays to subroutines — code with bug

Note: x is a scalar, setvals dummy argument a is an array.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Passing arrays to subroutines

The call setvals(x) statement passes the address where
x is stored.

In the subroutine, the array a of length 3 is assumed to start at
this address. So next 3 ∗ 8 = 24 bytes are assumed to be
elements of a(1:3).

In fact these 24 bytes are occupied by
x (8 bytes),
y (8 bytes),
i (4 bytes),
j (4 bytes).

So setting a(1:3) changes all these variables!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Passing arrays to subroutines

This produces:

x = 5.00000000000000
y = 5.00000000000000
i = 1075052544
j = 0

Nasty!!

• The storage location of x and the next 2 storage locations
were all set to the floating point value 5.0e0

• This messed up the values originally stored in y, i, j.
• Integers are stored differently than floats. Two integers

take up 8 bytes, the same as one float, so the assignment
a(3) = 5. overwrites both i and j.

• The first half of the float 5., when interpreted as an integer,
is huge.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Passing arrays to subroutines — another bug

Note: We now try to set 1000 elements in memory!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Passing arrays to subroutines

This compiles fine, but running it gives:

Segmentation fault

This means that the program tried to change a value of memory
it was not allowed to.

Only a small amount of memory is devoted to the variables
declared.

The memory we tried to access might be where the program
itself is stored, or something related to another program that’s
running.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Segmentation faults

Debugging segmentation faults can be difficult.

Tip: Compile using -fbounds-check option of gfortran.

This catches some cases when you try to access an array out
of bounds.

But not the case just shown! The variable was passed to a
subroutine that doesn’t know how long the array should be.

For a case where this helps, see
$UWHPSC/codes/fortran/segfault1.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8

