
AMath 483/583 — Lecture 7

This lecture:

• Python debugging demo

• Compiled langauges

• Introduction to Fortran 90 syntax

• Declaring variables, loops, booleans

Reading:

• class notes: Python debugging
• class notes: Python plotting
• class notes: Fortran
• class notes: Fortran Arrays

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

http://faculty.washington.edu/rjl/classes/am583s2013/notes/python_debugging.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/python_plotting.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/fortran.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/fortran_array.html

Changes in uwhpsc repository

A new branch has been added to the uwhpsc repository on
bitbucket.

The coursera branch will be used for modifications needed for
the Coursera version.

Ignore this branch and stay on master.

Note that git fetch will also fetch history into origin/coursera

You want to:

$ git fetch origin
$ git branch # make sure you are on master
$ git checkout master # if you weren’t
$ git merge origin/master

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

AMath 483/583 — Lecture 7

This lecture:

• Python debugging demo

• Compiled langauges

• Introduction to Fortran 90 syntax

• Declaring variables, loops, booleans

Reading:

• class notes: Python debugging
• class notes: Python plotting
• class notes: Fortran
• class notes: Fortran Arrays

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

http://faculty.washington.edu/rjl/classes/am583s2013/notes/python_debugging.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/python_plotting.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/fortran.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/fortran_array.html

Compiled vs. interpreted language

Not so much a feature of language syntax as of how language
is converted into machine instructions.

Many languages use elements of both.

Interpreter:
• Takes commands one at a time, converts into machine

code, and executes.
• Allows interactive programming at a shell prompt, as in

Python or Matlab.
• Can’t take advantage of optimizing over a entire program

— does not know what instructions are coming next.
• Must translate each command while running the code,

possibly many times over in a loop.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
converts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
converts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
converts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
converts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran history

Prior to Fortran, programs were often written in machine code
or assembly language.

FORTRAN = FORmula TRANslator

Fortran I: 1954–57, followed by Fortran II, III, IV, Fortran 66.

Major changes in Fortran 77, which is still widely used.

“I don’t know what the language of the year 2000 will
look like, but I know it will be called Fortran.”

– Tony Hoare, 1982

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran history

Prior to Fortran, programs were often written in machine code
or assembly language.

FORTRAN = FORmula TRANslator

Fortran I: 1954–57, followed by Fortran II, III, IV, Fortran 66.

Major changes in Fortran 77, which is still widely used.

“I don’t know what the language of the year 2000 will
look like, but I know it will be called Fortran.”

– Tony Hoare, 1982

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran history

Prior to Fortran, programs were often written in machine code
or assembly language.

FORTRAN = FORmula TRANslator

Fortran I: 1954–57, followed by Fortran II, III, IV, Fortran 66.

Major changes in Fortran 77, which is still widely used.

“I don’t know what the language of the year 2000 will
look like, but I know it will be called Fortran.”

– Tony Hoare, 1982

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran history

Major changes again from Fortran 77 to Fortran 90.

Fortran 95: minor changes.

Fortran 2003, 2008: not fully implemented by most compilers.

We will use Fortran 90/95.

gfortran — GNU open source compiler

Several commercial compilers also available.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran syntax

Big differences between Fortran 77 and Fortran 90/95.

Fortran 77 still widely used:
• Legacy codes (written long ago, millions of lines...)
• Faster for some things.

Note: In general adding more high-level programming features
to a language makes it harder for compiler to optimize into
fast-running code.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran syntax

One big difference: Fortran 77 (and prior versions) required
fixed format of lines:

Executable statements must start in column 7 or greater,

Only the first 72 columns are used, the rest ignored!

http://en.wikipedia.org/wiki/File:FortranCardPROJ039.agr.jpg

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

http://en.wikipedia.org/wiki/File:FortranCardPROJ039.agr.jpg

Punch cards and decks

http://en.wikipedia.org/wiki/File:PunchCardDecks.agr.jpg

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

http://en.wikipedia.org/wiki/File:PunchCardDecks.agr.jpg

Paper tape

http://en.wikipedia.org/wiki/Punched_tape

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

http://en.wikipedia.org/wiki/Punched_tape

Fortran syntax

Fortran 90: free format.

Indentation is optional (but highly recommended).

gfortran will compile Fortran 77 or 90/95.

Use file extension .f for fixed format (column 7 ...)

Use file extension .f90 for free format.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Simple Fortran program

! $UWHPSC/codes/fortran/example1.f90
program example1

implicit none
real (kind=8) :: x,y,z

x = 3.d0
y = 1.d-1
z = x + y
print *, "z = ", z

end program example1

Notes:
• Indentation optional (but make it readable!)
• First declaration of variables then executable statements
• implicit none means all variables must be declared

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Simple Fortran program

! $UWHPSC/codes/fortran/example1.f90
program example1

implicit none
real (kind=8) :: x,y,z

x = 3.d0
y = 1.d-1
z = x + y
print *, "z = ", z

end program example1

More notes:
• (kind = 8) means 8-bytes used for storage,
• 3.d0 means 3× 100 in double precision (8 bytes)
• 2.d-1 means 2× 10−1 = 0.2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Simple Fortran program

! $UWHPSC/codes/fortran/example1.f90
program example1

implicit none
real (kind=8) :: x,y,z

x = 3.d0
y = 1.d-1
z = x + y
print *, "z = ", z

end program example1

More notes:
• print *, ...: The * means no special format specified

As a result all available digits of z will be printed.
• Later will see how to specify print format.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Compiling and running Fortran

Suppose example1.f90 contains this program.

Then:

$ gfortran example1.f90

compiles and links and creates an executable named a.out

To run the code after compiling it:

$./a.out
z = 3.20000000000000

The command ./a.out executes this file (in the current
directory).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Compiling and running Fortran

Can give executable a different name with -o flag:

$ gfortran example1.f90 -o example1.exe
$./example1.exe

z = 3.20000000000000

Can separate compile and link steps:

$ gfortran -c example1.f90 # creates example1.o

$ gfortran example1.o -o example1.exe
$./example1.exe
z = 3.20000000000000

This creates and then uses the object code example1.o.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Compile-time errors

Introduce an error in the code: (zz instead of z)

program example1
implicit none
real (kind=8) :: x,y,z
x = 3.d0
y = 2.d-1
zz = x + y
print *, "z = ", z

end program example1

This gives an error when compiling:

$ gfortran example1.f90
example1.f90:11.6:
zz = x + y
1

Error: Symbol ’zz’ at (1) has no IMPLICIT type

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Without the “implicit none”

Introduce an error in the code: (zz instead of z)

program example1
real (kind=8) :: x,y,z
x = 3.d0
y = 2.d-1
zz = x + y
print *, "z = ", z

end program example1

This compiles fine and gives the result:

$ gfortran example1.f90
$./a.out

z = -3.626667641771191E-038

Or some other random nonsense since z was never set.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran types

Variables refer to particular storage location(s), must declare
variable to be of a particular type and this won’t change.

The statement

implicit none

means all variables must be explicitly declared.

Otherwise you can use a variable without prior declaration and
the type will depend on what letter the name starts with.
Default:

• integer if starts with i, j, k, l, m, n
• real (kind=4) otherwise (single precision)

Many older Fortran codes use this convention!

Much safer to use implicit none for clarity,
and to help avoid typos.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran arrays and loops

! $UWHPSC/codes/fortran/loop1.f90
program loop1

implicit none
integer, parameter :: n = 10000
real (kind=8), dimension(n) :: x, y
integer :: i

do i=1,n
x(i) = 3.d0 * i
enddo

do i=1,n
y(i) = 2.d0 * x(i)
enddo

print *, "Last y computed: ", y(n)
end program loop1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran arrays and loops

program loop1
implicit none
integer, parameter :: n = 10000
real (kind=8), dimension(n) :: x, y
integer :: i

Comments:
• integer, parameter means this value will not be

changed.
• dimension(n) :: x, y means these are arrays of

length n.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran arrays and loops

do i=1,n
x(i) = 3.d0 * i
enddo

Comments:
• x(i) means i’th element of array.
• Instead of enddo, can also use labels...

do 100 i=1,n
x(i) = 3.d0 * i

100 continue

The number 100 is arbitrary. Useful for long loops.
Often seen in older codes.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran if-then-else

! $UWHPSC/codes/fortran/ifelse1.f90

program ifelse1
implicit none
real(kind=8) :: x
integer :: i

i = 3

if (i<=2) then
print *, "i is less or equal to 2"

else if (i/=5) then
print *, "i is greater than 2, not equal to 5"

else
print *, "i is equal to 5"

endif
end program ifelse1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran if-then-else

Booleans: .true. .false.

Comparisons:
< or .lt. <= or .le.

> or .gt. >= or .ge.

== or .eq. /= or .ne.

Examples:

if ((i >= 5) .and. (i < 12)) then

if (((i .lt. 5) .or. (i .ge. 12)) .and. &
(i .ne. 20)) then

Note: & is the Fortran continuation character.
Statement continues on next line.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

Fortran if-then-else

! $UWHPSC/codes/fortran/boolean1.f90
program boolean1

implicit none
integer :: i,k
logical :: ever_zero

ever_zero = .false.
do i=1,10

k = 3*i - 1
ever_zero = (ever_zero .or. (k == 0))
enddo

if (ever_zero) then
print *, "3*i - 1 takes the value 0 for some i"

else
print *, "3*i - 1 is never 0 for i tested"

endif
end program boolean1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7

	Lecture 7
	Compilers, Interpreters, Fortran

