AMath 483/583 - Lecture 3

This lecture:

- computing square roots
- Python demo
- git demo

Reading:

- class notes: git section
- class notes: Python sections (new)

Computing square roots

Hardware arithmetic units can add, subtract, multiply, divide.
Other mathematical functions usually take some software.

Computing square roots

Hardware arithmetic units can add, subtract, multiply, divide.
Other mathematical functions usually take some software.

Example: Compute $\sqrt{2} \approx 1.4142135623730951$
In most languages, sqrt(2) computes this.

```
>>> from numpy import sqrt
>>> sqrt(2.)
```


One possible algorithm to approximate $s=\sqrt{x}$

```
s = 1. # or some better initial guess
for k in range(kmax):
    s}=0.5* (s+x/s
```

where kmax is some maximum number of iterations.
Note: In Python, range(N) is $[0,1,2,, \ldots, N-1]$.

One possible algorithm to approximate $s=\sqrt{x}$

```
s = 1. # or some better initial guess
for k in range(kmax):
    s}=0.5*(s+x/s
```

where kmax is some maximum number of iterations.
Note: In Python, range(N) is $[0,1,2,, \ldots, N-1]$.
Why this works...
If $s<\sqrt{x}$ then $x / s>\sqrt{x}$
If $s>\sqrt{x}$ then $x / s<\sqrt{x}$

One possible algorithm to approximate $s=\sqrt{x}$

```
s = 1. # or some better initial guess
for k in range(kmax):
    s}=0.5*(s+x/s
```

where kmax is some maximum number of iterations.
Note: In Python, range(N) is $[0,1,2, \ldots, N-1]$.
Why this works...
If $s<\sqrt{x}$ then $x / s>\sqrt{x}$
If $s>\sqrt{x}$ then $x / s<\sqrt{x}$
In fact this is Newton's method to find root of $s^{2}-x=0$.

Newton's method

Problem: Find a solution of $f(s)=0$ (zero or root of f)

Idea: Given approximation $s^{[k]}$, approximate $f(s)$ by a linear function, the tangent line at $\left(s^{[k]}, f\left(s^{[k]}\right)\right)$.
Find unique zero of this function and use as $s^{[k+1]}$.

Newton's method

Problem: Find a solution of $f(s)=0$ (zero or root of f)

Idea: Given approximation $s^{[k]}$, approximate $f(s)$ by a linear function, the tangent line at $\left(s^{[k]}, f\left(s^{[k]}\right)\right)$.
Find unique zero of this function and use as $s^{[k+1]}$.

Updating formula:

$$
s^{[k+1]}=s^{[k]}-\frac{f\left(s^{[k]}\right)}{f^{\prime}\left(s^{[k]}\right)}
$$

Demo...

Goals:

- Develop our own version of sqre function.
- Start simple and add complexity in stages.
- Illustrate some Python programming.
- Illustrate use of git to track our development

We will do this in \$UWHPSC/lectures/lecture3 directory so you can examine the various versions later.

