
AMath 483/583 — Lecture 28

Outline:

• Numba and autojit
• Binary vs. ASCII output
• Review / take away messages

See also:

• Numba
• $UWHPSC/codes/io
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Just-in-time compilers for Python

Standard implementation of Python as interpreted language.

Importing mymodule.py creates mymodule.pyc, which is
Bytecode (portable code or pcode):

One-byte operators with operands,
Interpreted by software at runtime.

Runs much slower than compiled code that is machine-specific
instructions.

Just-in -time (JIT) compilation: Converts bytecode at runtime
into native machine code.

Can sometimes run faster than pre-compiled code.
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Just-in-time compilers for Python

Examples:

• PyPy — alternative implementation of Python

• numba — compiles decorated code to LLVM
(formerly Low Level Virtual Machine,
compiler infrastructure)

Included in the Anaconda Python distribution
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Numba — autojit decorator
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ASCII vs. binary output

Often need to write out a large array of floats with full precision.

For example, one solution value on 3d grid ...

do i=1,n
do j=1,n

do k=1,n
write(21,’(e24.16)’) u(i,j,k)

enddo; enddo; enddo

How much disk space does this take?

A single number such as 0.4000000000000000E+01
has 24 ASCII characters =⇒ 24 bytes per value.

Total 24n3 bytes. E.g. 100×100×100 grid: n = 100 =⇒ 24 MB.

Note: In memory storing one 8-byte float takes only 8 bytes.
(n = 100 =⇒ 8MB.) ASCII takes 3× the space.

Also takes additional time to convert to ASCII,
≈ 10× slower to write ASCII than dumping binary.
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Binary output in Fortran

Can use unformatted write in Fortran:

! $UWHPSC/codes/io/binwrite.f90

open(unit=20, file="u.bin", form="unformatted", &
status="unknown", access="stream")

do j=1,100
do i=1,500

u(i,j) = real(m*(j-1) + i, kind=8)
enddo

enddo

write(20) u ! writes entire array in binary
close(20)

-----------------------------------------------
$ ls -l
-rw-r--r-- 1 rjl staff 400000 Jun 6 20:09 u.bin
-rw-r--r-- 1 rjl staff 1200000 Jun 6 20:09 u.txt

The resulting binary file u.bin cannot be edited directly.

But we can read it into Python...
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Reading binary data files in Python

To recover U array of dimension m× n in Python:

# $UWHPSC/codes/io/binread.py

import numpy as np

file = open(’u.bin’, ’rb’)
uvec = np.fromfile(file, dtype=np.float64)

m,n = np.loadtxt(’mn.txt’,dtype=int)

# now use Fortran ordering to fill u by columns:
u = uvec.reshape((m,n),order=’F’)
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Other options for binary data

Binary formats that contain a lot of metadata...

Hierarchical Data Format: HDF, HDF4, HDF5

HDF5 file structure includes two major types of object:
• Datasets: multidimensional arrays of a homogenous type
• Groups: container structures for datasets and other groups

See also: h5py, PyTables

NetCDF (Network Common Data Form): Built on top of HDF5.

See also ncdump, netcdf4-python
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Summary, take away messages...

• Version control — git
Use for all your projects, collaborations, ...
Consider contributing to open source projects

Submit a pull request

• Python, NumPy, SciPy, matplotlib, IPython
Quickly trying out new ideas, optimize later
Graphics and visualization
Scripting to guide big computations
Combining codes from different languages
Many capabilities not seen in class, e.g.

Manipulating text files, regular expressions,
building web interfaces
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Summary, take away messages...

• Fortran 90
Compiled language
Tightly constrained but can run very fast
Native multi-dimensional arrays

• Makefiles
Dependency checking
Often used for building software

• Debugging code
Unit tests, nose module
Print statements, pdb, gdb

• Memory hierachy, cache considerations
Consider layout of arrays in memory
Aim for spatial and temporal locality
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Summary, take away messages...

• Parallel computing
Increasingly necessary for all computing
Amdahl’s law —

inherently sequential code limits parallelization
Weak vs. strong scaling
Fine grain vs. coarse grain parallelism
Load balancing

• OpenMP
Assumes shared memory
Often very easy to add to existing codes
Need to worry about shared/private variables,

race conditions
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Summary, take away messages...

• MPI — Message Passing Interface
Always assumes distributed memory
Sharing data requires message passing
SPMD: Single Program Multiple Data
Entire program run by each process

But different processes may take different branches

• Computer arithmetic
Floating point number representation, 4 byte vs. 8 byte
IEEE standards
Reproducibility still difficult in parallel
Relative error and precision possible
Condition number of problem / stability of algorithm
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Summary, take away messages...

• Linear algebra
Matrix norms and condition number of Ax = b
LAPACK, BLAS — optimized code
Iterative methods for large sparse system
Poisson problems: uxx = f(x) =⇒ tridiagonal
Two-dimensional Poisson problem uxx + uyy = f(x, y)

• Quadrature methods / numerical integration
Midpoint, Trapezoid, Simpson Rules
Adaptive Quadrature / Load balancing
Monte Carlo methods in high dimensions

• Monte Carlo methods
Pseudo Random Number Generation
Use of seed for reproducibility
Random walks
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Happy Computing!

Thanks for participating.

Thanks to TAs: Scott Moe and Susie Sargsyan

Office hours: See discussion board.

Have a great summer!
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