
AMath 483/583 — Lecture 26

Outline:

• Monte Carlo methods
• Random number generators
• Monte Carlo integrators
• Random walk solution of Poisson problem

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Announcements

Part of Final Project will be available tomorrow.

No Class on Monday, June 2

Wednesday, June 4: Please come for course evaluations.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

AMath 483/583 — Lecture 26

Outline:

• Monte Carlo methods
• Random number generators
• Monte Carlo integrators
• Random walk solution of Poisson problem

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Monte Carlo Methods

Computational methods that use random (or pseudo-random)
sampling to obtain numerical approximations.

Originally developed developed in 1940’s at Los Alamos for
neutron diffusion problems.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Monte Carlo methods

Examples:
• Approximate a definite integral by sampling the integrand

at random points (rather than on a regular grid, as with
Trapezoid or Simpson).

• Random walk solution to a Poisson problem

• Given a probability distribution of inputs to some problem,
estimate probability distribution of output.

Sensitivity analysis

Uncertainty quantification

• Simulate processes that have random data or forcing.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Classical quadrature

Midpoint rule in 1 dimension:

∫ b

a
f(x) dx ≈ h

n∑

i=1

f(xi)

There are n terms in sum and accuracy is O(h2) = O(1/n2)

Midpoint rule in 2 dimensions:

∫ b2

a2

∫ b1

a1

g(x1, x2) dx1 dx2 ≈ h2
n∑

j=1

n∑

i=1

g(x
[i]
1 , x

[j]
2)

There are N = n2 terms in sum and accuracy is
O(h2) = O(1/n2) = O(1/N)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Classical quadrature

Midpoint rule in 20 dimensions:

∫ b20

a20

· · ·
∫ b2

a2

∫ b1

a1

g(x1, x2, . . . , x20) dx1 dx2 · · · dx20

≈ h20
n∑

k=1

· · ·
n∑

j=1

n∑

i=1

g(x
[i]
1 , x

[j]
2 , . . . , x

[k]
20)

There are N = n20 terms in sum and accuracy is
O(h2) = O(1/n2) = O((1/N)1/10)

Note: with only n = 10 points in each direction, N = 1020.

On 1 GFlop computer, would take 1011 seconds > 3000 years to
compute sum and get accuracy ≈ 1/n2 = 0.01.

Also each evaluation of g might be expensive!
R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

High dimensions might arise from many parameters...

Example: Solve chemical kinetics equations u′(t) = F (u(t)) for
system with 20 reacting species and “mass action kinetics” in a
stirred tank (so concentrations vary with time but not space).

Need initial concentrations, e.g.

u1(0) = x1, u2(0) = x2, . . . , u20(0) = x20.

Suppose we want to determine u15(T) = g(x1, x2, . . . , x20).

Suppose initial conditions are not known exactly, but we know

a1 ≤ x1 ≤ b2, . . . , a20 ≤ x20 ≤ b20.

We might want to estimate the expected value of u15(T)

=
1

Volume

∫ b20

a20

· · ·
∫ b2

a2

∫ b1

a1

g(x1, x2, . . . , x20) dx1 dx2 · · · dx20.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Classical quadrature

N = 100 points in two space dimensions for Midpoint:

∫ b2

a2

∫ b1

a1

g(x1, x2) dx1 dx2 ≈ h2
n∑

j=1

n∑

i=1

g(x
[i]
1 , x

[j]
2)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Monte Carlo integration

N = 100 random points in the same 2-dimensional region:

∫ b2

a2

∫ b1

a1

g(x1, x2) dx1 dx2 ≈
V

N

N∑

k=1

g(x
[k]
1 , x

[k]
2)

V = (b2 − a2)(b1 − a1) is volume.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Monte Carlo integration

Accuracy: With N random points, error is O(1/
√
N).

This is true independent of the number of dimensions!

In 20 dimensions, if g is smooth than can expect error ≈ 0.01
with N = 10000. (vs. N = 1020 for Midpoint.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Log-log plot of errors with Monte Carlo

Black line: 1/
√
N = N−1/2.

Note that E(N) = C/
√
N =⇒ log(E(N)) = log(C)− 1

2 log(N)

Red points: For an integral in 2 dimensions

Blue points: For an integral in 20 dimensions

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Pseudo-Random number generators

Hard to generate a truly random number on the computer.

Instead generally use pseudo-random number generators that
produce a sequence of numbers by some deterministic
formula, but designed so that numbers generated are
approximately distributed according to desired distribution.

Linear congruential generator:

Xn+1 = aXn + c mod m

e.g. from Numerical Recipes:

a = 1664525, c = 1013904223, m = 232

Requires a seed X0 to get started.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Pseudo-Random number generators

In Python: Plot of 100 random points was generated using...

from numpy.random import RandomState
random_generator = RandomState(seed=55)
r = random_generator.uniform(0., 1., size=200)
plot(r[::2],r[1::2],’bo’)

Initializing with seed=None will use a “random” seed.

Specifying a seed makes it possible to reproduce the same
results later.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Pseudo-Random number generators

In Fortran:

integer, dimension(:), allocatable :: seed

! determine how many seeds needed:
call random_seed(size = nseed)
allocate(seed(nseed))

seed = ... ! array of integers

call random_seed(put = seed)
deallocate(seed)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Pseudo-Random number generators

To reduce to a single seed1:

if (seed1 == 0) then
! randomize the seed: not repeatable
call system_clock(count = clock)
seed1 = clock

endif

do i=1,nseed
seed(i) = seed1 + 37*(i-1)
enddo

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Pseudo-Random number generators

To generate n random numbers, uniformly distributed in [0, 1]:

real(kind=4), allocatable :: r(:)
allocate(r(n))
call random_number(r)

r_ab = a + r*(b-a) ! uniform in [a,b]

Note: More efficient in general to call random_number once
for array of length n rather than n times in succession, but
same sequence of numbers will be generated.

State at end of one call is used at start of next call!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Pseudo-Random number generators in parallel

With OpenMP...

State is changed whenever any thread calls random_number.

Different threads share same global state.
(Should be thread safe, but can’t generate in parallel.)

real(kind=4) :: r, x(100)

!$omp parallel do private(r)
do i=1,100

call random_number(r)
x(i) = r
enddo

Should produce same set of random numbers but may not end
up in same order!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Pseudo-Random number generators in parallel

With MPI... (Processes cannot share the state)

If each process initializes with same seed, then each process
will generate the same sequence of random numbers

call random_number(r)

Will produce the same r on each process.

This might not be what you want, e.g. if splitting up Monte Carlo
integration between processes — want each to sample a
different set of points on each process.

Would need to seed differently on each Process, e.g.
seed(i) = seed1 + 37*(i-1) + 97*proc_num

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Monte Carlo solution of Poisson problem

Suppose we want to compute an approximate solution to

uxx + uyy = 0 with u given on boundary

at a single point (x0, y0).

Finite difference approach: Discretize domain and solve linear
system for approximations Uij at all points on grid.

Instead can take a random walk starting at (x0, y0) and evaluate
u at the first boundary point the walk reaches.

Do this N times and average all the values obtained.

This average converges to u(x0, y0) with rate 1/
√
N .

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Monte Carlo solution of Poisson problem

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Random walk on a lattice

uxx + uyy = 0 with solution u(x, y) = x2 − y2.

Estimate solution at (x0, y0) = (0.9, 0.7) where u(x0, y0) = 0.32.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Random walk on a lattice

uxx + uyy = 0 with solution u(x, y) = x2 − y2.

Estimate solution at (x0, y0) = (0.9, 0.7) where u(x0, y0) = 0.32.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Random walk on a lattice

Strategy:

Start at (x0, y0).

Each step, move to one of 4 neighbors, choosing with equal
probability.

If 0 ≤ r ≤ 1 is a uniformly distributed random number then
decide based on:

0 ≤ r < 0.25 =⇒ move left

0.25 ≤ r < 0.5 =⇒ move right

0.5 ≤ r < 0.75 =⇒ move down

0.75 ≤ r ≤ 1.0 =⇒ move down

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Random walk on a lattice

Why does this work? Let Eij be expected value of boundary
value reached if starting at grid point (i, j).

Then Eij =
1
4(Ei−1,j + Ei+1,j + Ei,j−1 + Ei,j+1)

The same equation as finite difference method for Poisson!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 26

