AMath 483/583 - Lecture 26

Outline:

- Monte Carlo methods
- Random number generators
- Monte Carlo integrators
- Random walk solution of Poisson problem

Announcements

Part of Final Project will be available tomorrow.

Announcements

Part of Final Project will be available tomorrow.

No Class on Monday, June 2

Announcements

Part of Final Project will be available tomorrow.

No Class on Monday, June 2

Wednesday, June 4: Please come for course evaluations.

AMath 483/583 - Lecture 26

Outline:

- Monte Carlo methods
- Random number generators
- Monte Carlo integrators
- Random walk solution of Poisson problem

Monte Carlo Methods

Computational methods that use random (or pseudo-random) sampling to obtain numerical approximations.

Originally developed developed in 1940's at Los Alamos for neutron diffusion problems.

Monte Carlo methods

Examples:

- Approximate a definite integral by sampling the integrand at random points (rather than on a regular grid, as with Trapezoid or Simpson).
- Random walk solution to a Poisson problem
- Given a probability distribution of inputs to some problem, estimate probability distribution of output.

Sensitivity analysis
Uncertainty quantification

- Simulate processes that have random data or forcing.

Classical quadrature

Midpoint rule in 1 dimension:

$$
\int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{n} f\left(x_{i}\right)
$$

There are n terms in sum and accuracy is $\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(1 / n^{2}\right)$

Classical quadrature

Midpoint rule in 1 dimension:

$$
\int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{n} f\left(x_{i}\right)
$$

There are n terms in sum and accuracy is $\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(1 / n^{2}\right)$
Midpoint rule in 2 dimensions:

$$
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} g\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \approx h^{2} \sum_{j=1}^{n} \sum_{i=1}^{n} g\left(x_{1}^{[i]}, x_{2}^{[j]}\right)
$$

There are $N=n^{2}$ terms in sum and accuracy is

$$
\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(1 / n^{2}\right)=\mathcal{O}(1 / N)
$$

Classical quadrature

Midpoint rule in 20 dimensions:

$$
\begin{aligned}
& \int_{a_{20}}^{b_{20}} \cdots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} g\left(x_{1}, x_{2}, \ldots, x_{20}\right) d x_{1} d x_{2} \cdots d x_{20} \\
& \approx h^{20} \sum_{k=1}^{n} \cdots \sum_{j=1}^{n} \sum_{i=1}^{n} g\left(x_{1}^{[i]}, x_{2}^{[j]}, \ldots, x_{20}^{[k]}\right)
\end{aligned}
$$

There are $N=n^{20}$ terms in sum and accuracy is

$$
\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(1 / n^{2}\right)=\mathcal{O}\left((1 / N)^{1 / 10}\right)
$$

Classical quadrature

Midpoint rule in 20 dimensions:

$$
\begin{aligned}
& \int_{a_{20}}^{b_{20}} \cdots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} g\left(x_{1}, x_{2}, \ldots, x_{20}\right) d x_{1} d x_{2} \cdots d x_{20} \\
& \approx h^{20} \sum_{k=1}^{n} \cdots \sum_{j=1}^{n} \sum_{i=1}^{n} g\left(x_{1}^{[i]}, x_{2}^{[j]}, \ldots, x_{20}^{[k]}\right)
\end{aligned}
$$

There are $N=n^{20}$ terms in sum and accuracy is

$$
\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(1 / n^{2}\right)=\mathcal{O}\left((1 / N)^{1 / 10}\right)
$$

Note: with only $n=10$ points in each direction, $N=10^{20}$.
On 1 GFlop computer, would take 10^{11} seconds >3000 years to compute sum and get accuracy $\approx 1 / n^{2}=0.01$.

Classical quadrature

Midpoint rule in 20 dimensions:

$$
\begin{aligned}
& \int_{a_{20}}^{b_{20}} \cdots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} g\left(x_{1}, x_{2}, \ldots, x_{20}\right) d x_{1} d x_{2} \cdots d x_{20} \\
& \approx h^{20} \sum_{k=1}^{n} \cdots \sum_{j=1}^{n} \sum_{i=1}^{n} g\left(x_{1}^{[i]}, x_{2}^{[j]}, \ldots, x_{20}^{[k]}\right)
\end{aligned}
$$

There are $N=n^{20}$ terms in sum and accuracy is

$$
\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(1 / n^{2}\right)=\mathcal{O}\left((1 / N)^{1 / 10}\right)
$$

Note: with only $n=10$ points in each direction, $N=10^{20}$.
On 1 GFlop computer, would take 10^{11} seconds >3000 years to compute sum and get accuracy $\approx 1 / n^{2}=0.01$.

Also each evaluation of g might be expensive!

High dimensions might arise from many parameters...

Example: Solve chemical kinetics equations $u^{\prime}(t)=F(u(t))$ for system with 20 reacting species and "mass action kinetics" in a stirred tank (so concentrations vary with time but not space).

High dimensions might arise from many parameters...

Example: Solve chemical kinetics equations $u^{\prime}(t)=F(u(t))$ for system with 20 reacting species and "mass action kinetics" in a stirred tank (so concentrations vary with time but not space).

Need initial concentrations, e.g.

$$
u_{1}(0)=x_{1}, \quad u_{2}(0)=x_{2}, \quad \ldots, \quad u_{20}(0)=x_{20}
$$

Suppose we want to determine $u_{15}(T)=g\left(x_{1}, x_{2}, \ldots, x_{20}\right)$.

High dimensions might arise from many parameters...

Example: Solve chemical kinetics equations $u^{\prime}(t)=F(u(t))$ for system with 20 reacting species and "mass action kinetics" in a stirred tank (so concentrations vary with time but not space).

Need initial concentrations, e.g.

$$
u_{1}(0)=x_{1}, \quad u_{2}(0)=x_{2}, \quad \ldots, \quad u_{20}(0)=x_{20}
$$

Suppose we want to determine $u_{15}(T)=g\left(x_{1}, x_{2}, \ldots, x_{20}\right)$.
Suppose initial conditions are not known exactly, but we know

$$
a_{1} \leq x_{1} \leq b_{2}, \quad \ldots, \quad a_{20} \leq x_{20} \leq b_{20}
$$

High dimensions might arise from many parameters...

Example: Solve chemical kinetics equations $u^{\prime}(t)=F(u(t))$ for system with 20 reacting species and "mass action kinetics" in a stirred tank (so concentrations vary with time but not space).

Need initial concentrations, e.g.

$$
u_{1}(0)=x_{1}, \quad u_{2}(0)=x_{2}, \ldots, \quad u_{20}(0)=x_{20}
$$

Suppose we want to determine $u_{15}(T)=g\left(x_{1}, x_{2}, \ldots, x_{20}\right)$.
Suppose initial conditions are not known exactly, but we know

$$
a_{1} \leq x_{1} \leq b_{2}, \quad \ldots, \quad a_{20} \leq x_{20} \leq b_{20}
$$

We might want to estimate the expected value of $u_{15}(T)$

$$
=\frac{1}{\text { Volume }} \int_{a_{20}}^{b_{20}} \cdots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} g\left(x_{1}, x_{2}, \ldots, x_{20}\right) d x_{1} d x_{2} \cdots d x_{20} .
$$

Classical quadrature

$N=100$ points in two space dimensions for Midpoint:


```
\[
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} g\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \approx h^{2} \sum_{j=1}^{n} \sum_{i=1}^{n} g\left(x_{1}^{[i]}, x_{2}^{[j]}\right)
\]
```


Monte Carlo integration

$N=100$ random points in the same 2-dimensional region:

$$
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} g\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \approx \frac{V}{N} \sum_{k=1}^{N} g\left(x_{1}^{[k]}, x_{2}^{[k]}\right)
$$

$$
V=\left(b_{2}-a_{2}\right)\left(b_{1}-a_{1}\right) \quad \text { is volume. }
$$

Monte Carlo integration

Accuracy: With N random points, error is $\mathcal{O}(1 / \sqrt{N})$.
This is true independent of the number of dimensions!

Monte Carlo integration

Accuracy: With N random points, error is $\mathcal{O}(1 / \sqrt{N})$.
This is true independent of the number of dimensions!

In 20 dimensions, if g is smooth than can expect error ≈ 0.01 with $N=10000$. (vs. $N=10^{20}$ for Midpoint.)

Log-log plot of errors with Monte Carlo

Black line: $1 / \sqrt{N}=N^{-1 / 2}$.
Note that $E(N)=C / \sqrt{N} \Longrightarrow \log (E(N))=\log (C)-\frac{1}{2} \log (N)$

Red points: For an integral in 2 dimensions
Blue points: For an integral in 20 dimensions

Pseudo-Random number generators

Hard to generate a truly random number on the computer.
Instead generally use pseudo-random number generators that produce a sequence of numbers by some deterministic formula, but designed so that numbers generated are approximately distributed according to desired distribution.

Pseudo-Random number generators

Hard to generate a truly random number on the computer.
Instead generally use pseudo-random number generators that produce a sequence of numbers by some deterministic formula, but designed so that numbers generated are approximately distributed according to desired distribution.

Linear congruential generator:

$$
X_{n+1}=a X_{n}+c \bmod m
$$

e.g. from Numerical Recipes:

$$
a=1664525, \quad c=1013904223, \quad m=2^{32}
$$

Requires a seed X_{0} to get started.

Pseudo-Random number generators

In Python: Plot of 100 random points was generated using...

```
from numpy.random import RandomState
random_generator = RandomState(seed=55)
r = random_generator.uniform(0., 1., size=200)
plot(r[::2],r[1::2],'bo')
```


Pseudo-Random number generators

In Python: Plot of 100 random points was generated using...

```
from numpy.random import RandomState
random_generator = RandomState(seed=55)
r = random_generator.uniform(0., 1., size=200)
plot(r[::2],r[1::2],'bo')
```

Initializing with seed=None will use a "random" seed.
Specifying a seed makes it possible to reproduce the same results later.

Pseudo-Random number generators

In Fortran:

```
integer, dimension(:), allocatable :: seed
! determine how many seeds needed:
call random_seed(size = nseed)
allocate(seed(nseed))
seed = ... ! array of integers
call random_seed(put = seed)
deallocate(seed)
```


Pseudo-Random number generators

To reduce to a single seed1:

```
if (seed1 \(==0\) ) then
    ! randomize the seed: not repeatable
    call system_clock(count \(=\) clock)
    seed1 = clock
    endif
do \(i=1\), nseed
    seed(i) \(=\) seed1 \(+37 \star(i-1)\)
    enddo
```


Pseudo-Random number generators

To generate n random numbers, uniformly distributed in $[0,1]$:

```
real(kind=4), allocatable :: r(:)
allocate(r(n))
call random_number(r)
r_ab = a + r*(b-a) ! uniform in [a,b]
```


Pseudo-Random number generators

To generate n random numbers, uniformly distributed in $[0,1]$:

```
real(kind=4), allocatable :: r(:)
allocate(r(n))
call random_number(r)
r_ab = a + r*(b-a) ! uniform in [a,b]
```

Note: More efficient in general to call random_number once for array of length n rather than n times in succession, but same sequence of numbers will be generated.

State at end of one call is used at start of next call!

Pseudo-Random number generators in parallel

With OpenMP...

State is changed whenever any thread calls random_number.
Different threads share same global state.
(Should be thread safe, but can't generate in parallel.)

```
real(kind=4) :: r, x(100)
!$omp parallel do private(r)
do i=1,100
        call random_number(r)
        x(i) = r
        enddo
```

Should produce same set of random numbers but may not end up in same order!

Pseudo-Random number generators in parallel

With MPI... (Processes cannot share the state)
If each process initializes with same seed, then each process will generate the same sequence of random numbers
call random_number (r)

Will produce the same r on each process.

Pseudo-Random number generators in parallel

With MPI... (Processes cannot share the state)
If each process initializes with same seed, then each process will generate the same sequence of random numbers

$$
\text { call random_number }(r)
$$

Will produce the same r on each process.

This might not be what you want, e.g. if splitting up Monte Carlo integration between processes - want each to sample a different set of points on each process.

Pseudo-Random number generators in parallel

With MPI... (Processes cannot share the state)
If each process initializes with same seed, then each process will generate the same sequence of random numbers

$$
\text { call random_number }(r)
$$

Will produce the same r on each process.

This might not be what you want, e.g. if splitting up Monte Carlo integration between processes - want each to sample a different set of points on each process.

Would need to seed differently on each Process, e.g.

$$
\text { seed }(i)=\text { seed } 1+37 \star(i-1)+97 \star \text { proc_num }
$$

Monte Carlo solution of Poisson problem

Suppose we want to compute an approximate solution to

$$
u_{x x}+u_{y y}=0 \quad \text { with } u \text { given on boundary }
$$

at a single point $\left(x_{0}, y_{0}\right)$.
Finite difference approach: Discretize domain and solve linear system for approximations $U_{i j}$ at all points on grid.

Monte Carlo solution of Poisson problem

Suppose we want to compute an approximate solution to

$$
u_{x x}+u_{y y}=0 \quad \text { with } u \text { given on boundary }
$$

at a single point $\left(x_{0}, y_{0}\right)$.
Finite difference approach: Discretize domain and solve linear system for approximations $U_{i j}$ at all points on grid.

Instead can take a random walk starting at $\left(x_{0}, y_{0}\right)$ and evaluate u at the first boundary point the walk reaches.

Do this N times and average all the values obtained.

Monte Carlo solution of Poisson problem

Suppose we want to compute an approximate solution to

$$
u_{x x}+u_{y y}=0 \quad \text { with } u \text { given on boundary }
$$

at a single point $\left(x_{0}, y_{0}\right)$.
Finite difference approach: Discretize domain and solve linear system for approximations $U_{i j}$ at all points on grid.

Instead can take a random walk starting at $\left(x_{0}, y_{0}\right)$ and evaluate u at the first boundary point the walk reaches.

Do this N times and average all the values obtained.
This average converges to $u\left(x_{0}, y_{0}\right)$ with rate $1 / \sqrt{N}$.

Monte Carlo solution of Poisson problem

Random walk on a lattice

$u_{x x}+u_{y y}=0$ with solution $u(x, y)=x^{2}-y^{2}$.
Estimate solution at $\left(x_{0}, y_{0}\right)=(0.9,0.7)$ where $u\left(x_{0}, y_{0}\right)=0.32$.

Hit boundary where $u=0.577500$

Random walk on a lattice

$u_{x x}+u_{y y}=0$ with solution $u(x, y)=x^{2}-y^{2}$.
Estimate solution at $\left(x_{0}, y_{0}\right)=(0.9,0.7)$ where $u\left(x_{0}, y_{0}\right)=0.32$.

Hit boundary where $u=-0.437500$

Random walk on a lattice

Strategy:
Start at $\left(x_{0}, y_{0}\right)$.
Each step, move to one of 4 neighbors, choosing with equal probability.

If $0 \leq r \leq 1$ is a uniformly distributed random number then decide based on:

$$
\begin{aligned}
& 0 \leq r<0.25 \Longrightarrow \text { move left } \\
& 0.25 \leq r<0.5 \Longrightarrow \text { move right } \\
& 0.5 \leq r<0.75 \Longrightarrow \text { move down } \\
& 0.75 \leq r \leq 1.0 \Longrightarrow \text { move down }
\end{aligned}
$$

Random walk on a lattice

Why does this work? Let $E_{i j}$ be expected value of boundary value reached if starting at grid point (i, j).
Then $E_{i j}=\frac{1}{4}\left(E_{i-1, j}+E_{i+1, j}+E_{i, j-1}+E_{i, j+1}\right)$
The same equation as finite difference method for Poisson!

Hit boundary where $u=0.577500$

