AMath 483/583 - Lecture 24

Outline:

- Heat equation and discretization
- OpenMP and MPI for iterative methods
- Jacobi, Gauss-Seidel, SOR

Notes and Sample codes:

- Class notes: Linear algebra software
- \$UWHPSC/codes/openmp/jacobi1d_omp1.f90
- \$UWHPSC/codes/openmp/jacobi1d_omp2.f90
- \$UWHPSC/codes/mpi/jacobi1d_mpi.f90
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Steady state diffusion

If $f(x, t)=f(x)$ does not depend on time and if the boundary conditions don't depend on time, then $u(x, t)$ will converge towards steady state distribution satisfying

$$
0=D u_{x x}(x)+f(x)
$$

(by setting $u_{t}=0$.)
This is now an ordinary differential equation (ODE) for $u(x)$.
We can solve this on an interval, say $0 \leq x \leq 1$ with Boundary conditions:

$$
u(0)=\alpha, \quad u(1)=\beta
$$

Finite difference method

$U_{i} \approx u\left(x_{i}\right)$
$u_{x}\left(x_{i+1 / 2}\right) \approx \frac{U_{i+1}-U_{i}}{\Delta x}$
$u_{x}\left(x_{i-1 / 2}\right) \approx \frac{U_{i}-U_{i-1}}{\Delta x}$
So we can approximate second derivative at x_{i} by:

$$
\begin{aligned}
u_{x x}\left(x_{i}\right) & \approx \frac{1}{\Delta x}\left(\frac{U_{i+1}-U_{i}}{\Delta x}-\frac{U_{i}-U_{i-1}}{\Delta x}\right) \\
& =\frac{1}{\Delta x^{2}}\left(U_{i-1}-2 U_{i}+U_{i+1}\right)
\end{aligned}
$$

This gives coupled system of n linear equations:

$$
\frac{1}{\Delta x^{2}}\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=-f\left(x_{i}\right)
$$

for $i=1,2, \ldots, n$. With $U_{0}=\alpha$ and $U_{n+1}=\beta$.

Notes:

Notes:

Notes:

Iterative methods

Coupled system of n linear equations:

$$
\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=-\Delta x^{2} f\left(x_{i}\right)
$$

for $i=1,2, \ldots, n$. With $U_{0}=\alpha$ and $U_{n+1}=\beta$.
Iterative method starts with initial guess $U^{[0]}$ to solution and then improves $U^{[k]}$ to get $U^{[k+1]}$ for $k=0,1, \ldots$.

Note: Generally does not involve modifying matrix A.
Do not have to store matrix A at all, only know about stencil.
R.J. LeVeque, University of Washington

AMath 483/583, Lecture 24

Jacobi iteration

$$
\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=-\Delta x^{2} f\left(x_{i}\right)
$$

Solve for U_{i} :

$$
U_{i}=\frac{1}{2}\left(U_{i-1}+U_{i+1}+\Delta x^{2} f\left(x_{i}\right)\right) .
$$

Note: With no heat source, $f(x)=0$,
the temperature at each point is average of neighbors.
Suppose $U^{[k]}$ is a approximation to solution. Set

$$
U_{i}^{[k+1]}=\frac{1}{2}\left(U_{i-1}^{[k]}+U_{i+1}^{[k]}+\Delta x^{2} f\left(x_{i}\right)\right) \text { for } i=1,2, \ldots, n .
$$

Repeat for $k=0,1,2, \ldots$ until convergence.
Can be shown to converge (eventually... very slow!)
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Jacobi iteration in Fortran

```
uold = u ! starting values before updating
do iter=1,maxiter
        dumax = 0.d0
        do i=1,n
            u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
            dumax = max(dumax, abs(u(i)-uold(i)))
            enddo
        ! check for convergence:
        if (dumax .lt. tol) exit
        uold = u ! for next iteration
        enddo
```

Note: we must use old value at $i-1$ for Jacobi.
Otherwise we get the Gauss-Seidel method.
$u(i)=0.5 d 0 *(u(i-1)+u(i+1)+d x * * 2 * f(i))$
This actually converges faster!

Notes:

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

Jacobi with OpenMP - coarse grain
General Approach: - Fork threads only once at start of program. - Each thread is responsible for some portion of the arrays, from i=istart to $i=i e n d$. - Each iteration, must copy u to uold, update u, check for convergence. - Convergence check requires coordination between threads to get global dumax. - Print out final result after leaving parallel block See code in the repository or the notes: \$UWHPSC/codes/openmp/jacobi1d_omp2.f90
R.J. Leveque, University f W Wastingon ANath 4835588, Lectur 24
Jacobi with MPI
Each process is responsible for some portion of the arrays, from i=istart to $i=i e n d$. No shared memory: each process only has part of array. Updating formula: $u(i)=0.5 d 0 *(u o l d(i-1)+\operatorname{uold}(i+1)+d x * * 2 * f(i))$ Need to exchange values at boundaries: Updating at i=istart requires uold(istart-1) Updating at i=iend requires uold(istart+1) Example with $n=9$ interior points (plus boundaries): Process 0 has istart $=1$, iend $=5$ Process 1 has istart $=6$, iend $=9$

Jacobi with MPI — Sending to neighbors

```
call mpi_comm_rank(MPI_COMM_WORLD, me, ierr)
...
do iter = 1, maxiter
    uold = u
    if (me > 0) then
            call mpi__isend(uold(istart), 1, MPI_DOUBLE_PRECI
            end if
    if (me < ntasks-1) then
            ! Send right endpoint value to "right"
            call mpì_isend(uold(iend), 1, MPI_DOUBLE_PRECISI
            nd if me +
    end do
```

Note: Non-blocking mpi_isend is used,
Different tags (1 and 2) for left-going, right-going messages.

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

Jacobi with MPI

Other issues:

- Convergence check requires coordination between processes to get global dumax.
Use MPI_ALLREDUCE so all process check same value.
- Part of final result must be printed by each process (into common file heatsoln.txt), in proper order.

See code in the repository or the notes: \$UWHPSC/codes/mpi/jacobi1d_mpi.f90
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Jacobi with MPI — Writing solution in order

Want to write table of values $x(i), u(i)$ in heatsoln.txt.
Need them to be in proper order, so Process 0 must write to this file first, then Process 1, etc.

Approach:
Each process me waits for a message from me-1 indicating that it has finished writing its part. (Contents not important.)
Each process must open the file (without clobbering values already there), write to it, then close the file.
Assumes all processes share a file system!
On cluster or supercomputer, need to either: send all results to single process for writing, or write distributed files that may need to be combined later (some visualization tools handle distributed data!)

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

Jacobi in 2D using MPI

With two processes: Could partition unknown into
Process 0 takes grid points 1-8
Process 1 takes grid points 9-16
Each time step:
Process 0 sends top boundary (5-8) to Process 1,
Process 1 sends bottom boundary (9-12) to Process 0 .
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Jacobi in 2D using MPI

With more grid points and processes...
Could partition several different ways, e.g. with 4 processes:

The partition on the right requires less communication.
With m^{2} processes on grid with n^{2} points:
$2\left(m^{2}-1\right) n$ boundary points on left, $4(m-1) n$ boundary points on right.

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

For partition on left: Natural to number processes $0,1,2,3$ and pass boundary data from Process k to $k \pm 1$.

For $m \times m$ array of processors as on right: How do we figure out the neighboring process numbers?
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Creating a communicator for Cartesian blocks

```
integer dims(2)
logical isperiodic(2), reorder
ndim = 2 ! 2d grid of processes
dims(1) = 4 ! for 4x6 grid of processes
dims(2) = 6
isperiodic(1) = .false. ! periodic in x?
isperiodic(2) = .false. ! periodic in y?
reorder = .true. ! optimize ordering
call MPI_CART_CREATE(MPI_COMM_WORLD, ndim, &
    dims, isperiodic, reorder, comm2d, ierr)
```

Create communicator comm2d. See also:
MPI_CART_CREATE, MPI_CART_SHIFT, MPI_CART_COORDS.

Gauss-Seidel iteration in Fortran

```
do iter=1,maxiter
    dumax = 0.d0
    do i=1,n
        uold}= u(i
        u(i) = 0.5d0*(u(i-1) +u(i+1) + dx**2*f(i))
        dumax = max(dumax, abs(u(i)-uold))
        enddo
    ! check for convergence:
    if (dumax .lt. tol) exit
    enddo
```

Note: Now u (i) depends on value of $u(i-1)$ that has already been updated for previous i.

Good news: This converges about twice as fast as Jacobi!
But... loop carried dependence! Cannot parallelize so easily.

Notes:

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

Red-black ordering

We are free to write equations of linear system in any order... reordering rows of coefficient matrix, right hand side.

Can also number unknowns of linear system in any order... reordering elements of solution vector.

Red-black ordering: Iterate through points with odd index first ($i=1,3,5, \ldots$) and then even index points ($i=2,4,6, \ldots$).

Then all black points can be updated in any order, all red points can then be updated in any order.

Same asymptotic convergence rate as natural ordering.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Red-Black Gauss-Seidel

```
do iter=1,maxiter
    dumax = 0.d0
    ! UPDATE ODD INDEX POINTS:
    !$omp parallel do reduction(max : dumax) &
    ! $omp private (uold)
    do i=1,n,2
            uold = u(i)
            u(i) = 0.5d0*(u(i-1) +u(i+1) + dx**2*f(i))
            dumax = max(dumax, abs(u(i)-uold))
            enddo
    ! UPDATE EVEN INDEX POINTS:
    !$omp parallel do reduction(max : dumax) &
    !$omp private(uold)
    do i=2, n,2
        u(i)=u(i)
        u(i)=0.5d0*(u(i-1) +u(i+1) + dx**2*f(i))
        dumax = max(dumax, abs(u(i)-uold))
        enddo
    ! check for convergence:
    if (dumax .lt. tol) exit
    enddo
```


Gauss-Seidel method in 2D

If $\Delta x=\Delta y=h$:

$$
\frac{1}{h^{2}}\left(U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i, j}\right)=-f\left(x_{i}, y_{j}\right)
$$

Solve for $U_{i, j}$ and iterate:

$$
u_{i, j}^{[k+1]}=\frac{1}{4}\left(u_{i-1, j}^{[k+1]}+u_{i+1, j}^{[k]}+u_{i, j-1}^{[k+1]}+u_{i, j+1}^{[k]}-h^{2} f_{i, j}\right)
$$

Again no need for matrix A.
Note: Above indices for old and new values assumes we iterate in the natural row-wise order.

Notes:

Notes:

Notes:

Gauss-Seidel in 2D

Updating point 7 for example (u_{32}):
Depends on new values at points 6 and 3, old values at points 7 and 10.

$$
U_{32}^{[k+1]}=\frac{1}{4}\left(U_{22}^{[k+1]}+U_{42}^{[k]}+U_{21}^{[k+1]}+U_{41}^{[k]}+h^{2} f_{32}\right)
$$

Red-black ordering in 2D

Again all black points can be updated in any order:
New value depends only on red neighbors.
Then all red points can be updated in any order:
New value depends only on black neighbors.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

SOR method

Gauss-Seidel move solution in right direction but not far enough in general.

Iterates "relax" towards solution.
Successive Over-Relaxation (SOR):
Compute Gauss-Seidel approximation and then go further:

$$
\begin{aligned}
U_{i}^{*} & =\frac{1}{2}\left(U_{i-1}^{[k+1]}+U_{i+1}^{[k]}+\Delta x^{2} f\left(x_{i}\right)\right) \\
U_{i}^{[k+1]} & =U_{i}^{[k]}+\omega\left(U_{i}^{*}-U_{i}^{[k]}\right)
\end{aligned}
$$

where $1<\omega<2$.
Optimal omega (For this problem): $\omega=2-2 \pi \Delta x$.

Notes:

Notes:

R.J. LeVeque, University of Washington

Notes:

Convergence rates

Red-Black SOR in 1D

```
    do iter=1,maxiter
    dumax = 0.d0
        ! UPDATE ODD INDEX POINTS:
        ! $omp parallel do reduction(max : dumax) &
        ! $omp private (uold, ustar)
        do i=1,n,2
            uold = u(i)
            ustar = 0.5d0*(u(i-1) +u(i+1) + dx**2*f(i))
            u(i) = uold + omega*(ustar-uold)
            dumax = max(dumax, abs(u(i)-uold))
            enddo
        ! UPDATE EVEN INDEX POINTS:
    !$omp parallel do reduction(max : dumax) &
    ! $omp private(uold, ustar)
    do i=2,n,2
            uold = u(i)
            ustar = 0.5d0*(u(i-1) + u(i+1) +
            u(i) = uold + omega*(ustar-uold)
            enddo
    ! check for convergence...
```

Note that uold, ustar must be private!
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Announcements

Homework 6 is in the notes and due next Friday.
Quizzes for this week's lectures due next Wednesday.
Office hours today 9:30-10:20.
Next week:
Monday: no class
Wednesday: Guest lecture -
Brad Chamberlain, Cray
Chapel: A Next-Generation Partitioned Global Address Space (PGAS) Language

Notes:
R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24

Notes:

