
AMath 483/583 — Lecture 23

Outline:

• Linear systems: LU factorization and condition number
• Heat equation and discretization
• Iterative methods

Sample codes:

• $UWHPSC/codes/openmp/jacobi1d_omp1.f90

• $UWHPSC/codes/openmp/jacobi1d_omp2.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Announcements

Homework 6 is in the notes and due next Friday.

Quizzes for this week’s lectures due next Wednesday.

Office hours today 9:30 – 10:20.

Next week:

Monday: no class

Wednesday: Guest lecture —

Brad Chamberlain, Cray

Chapel: A Next-Generation Partitioned
Global Address Space (PGAS) Language

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

AMath 483/583 — Lecture 23

Outline:

• Linear systems: LU factorization and condition number
• Heat equation and discretization
• Iterative methods

Sample codes:

• $UWHPSC/codes/openmp/jacobi1d_omp1.f90

• $UWHPSC/codes/openmp/jacobi1d_omp2.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



DGESV — Solves a general linear system

SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV,
& B, LDB, INFO )

NRHS = number of right hand sides

B = matrix whose columns are right hand side(s) on input
solution vector(s) on output.

LDB = leading dimension of B.

INFO = integer returning 0 if successful.

A = matrix on input, L,U factors on output,

IPIV = Returns pivot vector (permutation of rows)
integer, dimension(N)
Row I was interchanged with row IPIV(I).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Gaussian elimination as factorization

If A is nonsingular it can be factored as

PA = LU

where

P is a permutation matrix (rows of identity permuted),

L is lower triangular with 1’s on diagonal,

U is upper triangular.

After returning from dgesv:
A contains L and U (without the diagonal of L),
IPIV gives ordering of rows in P .

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Gaussian elimination as factorization

Example:

A =




2 1 3
4 3 6
2 3 4







0 1 0
0 0 1
1 0 0






2 1 3
4 3 6
2 3 4


 =




1 0 0
1/2 1 0
1/2 −1/3 1






4 3 6
0 1.5 1
0 0 1/3




IPIV = (2,3,1)

and A comes back from DGESV as:



4 3 6
1/2 1.5 1
1/2 −1/3 1/3




R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



dgesv examples

See $UWHPSC/codes/lapack/random.

Sample codes that solve the linear system Ax = b with a
random n× n matrix A, where the value n is run-time input.

randomsys1.f90 is with static array allocation.

randomsys2.f90 is with dynamic array allocation.

randomsys3.f90 also estimates condition number of A.

κ(A) = ‖A‖ ‖A−1‖
Can bound relative error in solution in terms of relative error in
data using this:

Ax∗ = b∗ and Ax̃ = b̃ =⇒ ‖x̃− x∗‖
‖x∗‖ ≤ κ(A)

‖b̃− b∗‖
‖b∗‖

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Heat Equation / Diffusion Equation

Partial differential equation (PDE) for u(x, t)
in one space dimension and time.

u represents temperature in a 1-dimensional metal rod.

Or concentration of a chemical diffusing in a tube of water.

The PDE is
ut(x, t) = Duxx(x, t) + f(x, t)

where subscripts represent partial derivatives,

D = diffusion coefficient (assumed constant in space & time),

f(x, t) = source term (heat or chemical being added/removed).

Also need initial conditions u(x, 0)
and boundary conditions u(x1, t), u(x2, t).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Steady state diffusion

If f(x, t) = f(x) does not depend on time and if the boundary
conditions don’t depend on time, then u(x, t) will converge
towards steady state distribution satisfying

0 = Duxx(x) + f(x)

(by setting ut = 0.)

This is now an ordinary differential equation (ODE) for u(x).

We can solve this on an interval, say 0 ≤ x ≤ 1 with

Boundary conditions:

u(0) = α, u(1) = β.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Steady state diffusion

More generally: Take D = 1 or absorb in f ,

uxx(x) = −f(x) for 0 ≤ x ≤ 1,

Boundary conditions:

u(0) = α, u(1) = β.

Can be solved exactly if we can integrate f twice and use
boundary conditions to choose the two constants of integration.

Example: α = 20, β = 60, f(x) = 0 (no heat source)

Solution: u(x) = α+ x(β − α) =⇒ u′′(x) = 0.

No heat source =⇒ linear variation in steady state (uxx = 0).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Steady state diffusion

More generally: Take D = 1 or absorb in f ,

uxx(x) = −f(x) for 0 ≤ x ≤ 1,

Boundary conditions:

u(0) = α, u(1) = β.

Can be solved exactly if we can integrate f twice and use
boundary conditions to choose the two constants of integration.

More interesting example:

Example: α = 20, β = 60, f(x) = 100ex,

Solution: u(x) = (100e− 60)x+ 120− 100ex.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Steady state diffusion

For more complicated equations, numerical methods must
generally be used, giving approximations at discrete points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Finite difference method

Define grid points xi = i∆x in interval 0 ≤ x ≤ 1, where

∆x =
1

n+ 1

So x0 = 0, xn+1 = 1, and the n grid points x1, x2, . . . , xn are
equally spaced inside the interval.

Let Ui ≈ u(xi) denote approximate solution.

We know U0 = α and Un+1 = β from boundary conditions.

Idea: Replace differential equation for u(x) by system of n
algebraic equations for Ui values (i = 1, 2, . . . , n).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Finite difference method

Ui ≈ u(xi)

ux(xi+1/2) ≈ Ui+1−Ui

∆x

ux(xi−1/2) ≈ Ui−Ui−1

∆x

So we can approximate second derivative at xi by:

uxx(xi) ≈
1

∆x

(
Ui+1 − Ui

∆x
− Ui − Ui−1

∆x

)

=
1

∆x2
(Ui−1 − 2Ui + Ui+1)

This gives coupled system of n linear equations:

1

∆x2
(Ui−1 − 2Ui + Ui+1) = −f(xi)

for i = 1, 2, . . . , n. With U0 = α and Un+1 = β.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Tridiagonal linear system

α− 2U1 + U2 = −∆x2f(x1) (i = 1)

U1 − 2U2 + U3 = −∆x2f(x2) (i = 2)

Etc.

For n = 5:



−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2







U1

U2

U3

U4

U5




= −∆x2




f(x1)
f(x2)
f(x3)
f(x4)
f(x5)



−




α
0
0
0
β



.

General n× n system requires O(n3) flops to solve.

Tridiagonal n× n system requires O(n) flops to solve.

Could use LAPACK routine dgtsv.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Heat equation in 2 dimensions

One-dimensional equation generalizes to

ut(x, y, t) = D(uxx(x, y, t) + uyy(x, y, t)) + f(x, y, t)

on some domain in the x-y plane, with initial and boundary
conditions.

We will only consider rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Steady state problem (with D = 1):

uxx(x, y) + uyy(x, y) = −f(x, y)

This is a PDE in two spatial variables. (Poisson Problem)

Laplace’s equation if f(x, y) ≡ 0.
∇2 = (∂2

x + ∂2
y) is the Laplacian operator.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Finite difference equations for 2D Poisson problem

Let Uij ≈ u(xi, yj).

Replace differential equation

uxx(x, y) + uyy(x, y) = −f(x, y)

by algebraic equations

1

∆x2
(Ui−1,j − 2Ui,j + Ui+1,j)

+
1

∆y2
(Ui,j−1 − 2Ui,j + Ui,j+1) = −f(xi, yj)

If ∆x = ∆y = h:

1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) = −f(xi, yj).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Finite difference equations for 2D Poisson problem

1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) = −f(xi, yj).

On n× n grid (∆x = ∆y = 1/(n+ 1)) this gives a linear system
of n2 equations in n2 unknowns.

The above equation must be satisfied for i = 1, 2, . . . , n and
j = 1, 2, . . . , n.

Matrix is n2 × n2,
e.g. on 100 by 100 grid, matrix is 10, 000× 10, 000.

Contains (10, 000)2 = 100, 000, 000 elements.

Matrix is sparse: each row has at most 5 nonzeros out of n2

elements! But structure is no longer tridiagonal.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Finite difference equations for 2D Poisson problem

Matrix has block tridiagonal structure:

A =
1

h2




T I
I T I

I T I
I T


 T =




−4 1
1 −4 1

1 −4 1
1 −4




R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Iterative methods

Back to one space dimension first...

Coupled system of n linear equations:

(Ui−1 − 2Ui + Ui+1) = −∆x2f(xi)

for i = 1, 2, . . . , n. With U0 = α and Un+1 = β.

Iterative method starts with initial guess U [0] to solution and
then improves U [k] to get U [k+1] for k = 0, 1, . . ..

Note: Generally does not involve modifying matrix A.

Do not have to store matrix A at all, only know about stencil.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Jacobi iteration

(Ui−1 − 2Ui + Ui+1) = −∆x2f(xi)

Solve for Ui:

Ui =
1

2

(
Ui−1 + Ui+1 + ∆x2f(xi)

)
.

Note: With no heat source, f(x) = 0,
the temperature at each point is average of neighbors.

Suppose U [k] is a approximation to solution. Set

U
[k+1]
i =

1

2

(
U

[k]
i−1 + U

[k]
i+1 + ∆x2f(xi)

)
for i = 1, 2, . . . , n.

Repeat for k = 0, 1, 2, . . . until convergence.

Can be shown to converge (eventually... very slow!)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Slow convergence of Jacobi

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Slow convergence of Jacobi

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Slow convergence of Jacobi

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Iterative methods

Jacobi iteration is about the worst possible iterative method.

But it’s very simple, and useful as a test for parallelization.

Better iterative methods:

• Gauss-Seidel
• Successive Over-Relaxation (SOR)
• Conjugate gradients
• Preconditioned conjugate gradients
• Multigrid

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Iterative methods – initialization

! allocate storage for boundary points too:
allocate(x(0:n+1), u(0:n+1), f(0:n+1))

dx = 1.d0 / (n+1.d0)

!$omp parallel do
do i=0,n+1

! grid points:
x(i) = i*dx
! source term:
f(i) = 100.*exp(x(i))
! initial guess (linear function):
u(i) = alpha + x(i)*(beta-alpha)
enddo

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Jacobi iteration in Fortran

uold = u ! starting values before updating

do iter=1,maxiter

dumax = 0.d0

do i=1,n
u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
dumax = max(dumax, abs(u(i)-uold(i)))
enddo

! check for convergence:
if (dumax .lt. tol) exit

uold = u ! for next iteration
enddo

Note: we must use old value at i− 1 for Jacobi.

Otherwise we get the Gauss-Seidel method.
u(i) = 0.5d0*(u(i-1) + u(i+1) + dx**2*f(i))

This actually converges faster!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Jacobi with OpenMP parallel do (fine grain)

See: $UWHPSC/codes/openmp/jacobi1d_omp1.f90

uold = u ! starting values before updating

do iter=1,maxiter

dumax = 0.d0

!$omp parallel do reduction(max : dumax)
do i=1,n
u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
dumax = max(dumax, abs(u(i)-uold(i)))
enddo

! check for convergence:
if (dumax .lt. tol) exit

!$omp parallel do
do i=1,n

uold(i) = u(i) ! for next iteration
enddo

enddo

Note: Forking threads twice each iteration.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Jacobi with OpenMP – coarse grain

General Approach:

• Fork threads only once at start of program.

• Each thread is responsible for some portion of the arrays,
from i=istart to i=iend.

• Each iteration, must copy u to uold, update u, check for
convergence.

• Convergence check requires coordination between threads
to get global dumax.

• Print out final result after leaving parallel block

See code in the repository or the notes:
$UWHPSC/codes/openmp/jacobi1d_omp2.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23


