AMath 483/583 — Lecture 23

Outline:

e Linear systems: LU factorization and condition number
¢ Heat equation and discretization
e lterative methods

Sample codes:

o SUWHPSC/codes/openmp/jacobiid_omp1.f90
e SUWHPSC/codes/openmp/jacobiid_omp2.f90
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Announcements

Homework 6 is in the notes and due next Friday.
Quizzes for this week’s lectures due next Wednesday.
Office hours today 9:30 — 10:20.
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Announcements

Homework 6 is in the notes and due next Friday.
Quizzes for this week’s lectures due next Wednesday.

Office hours today 9:30 — 10:20.

Next week:
Monday: no class

Wednesday: Guest lecture —

Brad Chamberlain, Cray

Chapel: A Next-Generation Partitioned
Global Address Space (PGAS) Language
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DGESV — Solves a general linear system

SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV,
& B, LDB, INFO )

NRHS = number of right hand sides

B = matrix whose columns are right hand side(s) on input
solution vector(s) on output.

LDB = leading dimension of B.
INFO = integer returning O if successful.
A = matrix on input, L,U factors on output,

1P IV = Returns pivot vector (permutation of rows)
integer, dimension (N)
Row I was interchanged with row IPIV (I).
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Gaussian elimination as factorization

If Ais nonsingular it can be factored as
PA=LU
where
P is a permutation matrix (rows of identity permuted),
L is lower triangular with 1’s on diagonal,
U is upper triangular.

After returning from dgesv:
A contains L and U (without the diagonal of L),
IPIV gives ordering of rows in P.
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Gaussian elimination as factorization

Example:

IPIV = (2,3,1)

and A comes back from DGESV as:
4 3 6
/2 15 1
/2 —1/3 1/3
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dgesv examples

See SUWHPSC/codes/lapack/random.

Sample codes that solve the linear system Az = b with a
random n x n matrix A, where the value n is run-time input.

randomsys1 . f90 is with static array allocation.

randomsysZ2 . £90 is with dynamic array allocation.
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dgesv examples
See SUWHPSC/codes/lapack/random.

Sample codes that solve the linear system Az = b with a
random n x n matrix A, where the value n is run-time input.

randomsys1 . f90 is with static array allocation.

randomsysZ2 . £90 is with dynamic array allocation.

randomsys3.f£90 also estimates condition number of A.
K(A) = |A] |A7Y)]

Can bound relative error in solution in terms of relative error in

data using this:

1o — b*||

Ar* =b* and A7 =b — T

< k(A)
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Heat Equation / Diffusion Equation

Partial differential equation (PDE) for u(x, t)
in one space dimension and time.
u represents temperature in a 1-dimensional metal rod.

Or concentration of a chemical diffusing in a tube of water.
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Heat Equation / Diffusion Equation
Partial differential equation (PDE) for u(x, t)
in one space dimension and time.
u represents temperature in a 1-dimensional metal rod.

Or concentration of a chemical diffusing in a tube of water.

The PDE is
ut(x,t) = Duge(z,t) + f(x,t)

where subscripts represent partial derivatives,
D = diffusion coefficient (assumed constant in space & time),

f(z,t) = source term (heat or chemical being added/removed).
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Heat Equation / Diffusion Equation
Partial differential equation (PDE) for u(x, t)
in one space dimension and time.
u represents temperature in a 1-dimensional metal rod.

Or concentration of a chemical diffusing in a tube of water.

The PDE is
ut(x,t) = Duge(z,t) + f(x,t)

where subscripts represent partial derivatives,
D = diffusion coefficient (assumed constant in space & time),
f(z,t) = source term (heat or chemical being added/removed).

Also need initial conditions u(z, 0)
and boundary conditions u(z1,t), u(xz,t).
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Steady state diffusion

If f(z,t) = f(x) does not depend on time and if the boundary
conditions don’t depend on time, then u(x, t) will converge
towards steady state distribution satisfying

0 = Dugy(z) + f(z)

(by setting u; = 0.)

This is now an ordinary differential equation (ODE) for u(x).
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Steady state diffusion

If f(z,t) = f(x) does not depend on time and if the boundary
conditions don’t depend on time, then u(x, t) will converge
towards steady state distribution satisfying

0 = Dugg(z) + f(2)
(by setting u; = 0.)
This is now an ordinary differential equation (ODE) for u(x).
We can solve this on an interval, say 0 < z < 1 with

Boundary conditions:
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Steady state diffusion

More generally: Take D = 1 or absorb in f,
Ugg () = —f(x) for0 <z <1,

Boundary conditions:

Can be solved exactly if we can integrate f twice and use
boundary conditions to choose the two constants of integration.
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Steady state diffusion

More generally: Take D = 1 or absorb in f,
Ugg () = —f(x) for0 <z <1,

Boundary conditions:

Can be solved exactly if we can integrate f twice and use
boundary conditions to choose the two constants of integration.

Example: a =20, =060, f(z)=0 (no heatsource)
Solution: u(z) = a+ z(8 — «) = J"(z) = 0.

No heat source = linear variation in steady state (u,, = 0).
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Steady state diffusion

More generally: Take D = 1 or absorb in f,
Ugz () = — f () for0 <z <1,

Boundary conditions:

Can be solved exactly if we can integrate f twice and use
boundary conditions to choose the two constants of integration.

More interesting example:
Example: a =20, =060, f(z)=100e",
Solution: u(z) = (100e — 60)x 4+ 120 — 100e™.
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Steady state diffusion

l?).() 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Steady state diffusion

70

60 |

50|

40

30

20

l?).() 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

For more complicated equations, numerical methods must
generally be used, giving approximations at discrete points.
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Finite difference method

Define grid points z; = iAz in interval 0 < x < 1, where

1
Ax =
n—+1
So zp =0, x,41 =1, and the n grid points =1, zo, ..., x, are

equally spaced inside the interval.
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Finite difference method

Define grid points z; = iAz in interval 0 < x < 1, where

1
Ax =
n—+1
So zp =0, x,41 =1, and the n grid points =1, zo, ..., x, are

equally spaced inside the interval.
Let U; =~ u(z;) denote approximate solution.

We know Uy = o« and U,,+1 = [ from boundary conditions.
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Finite difference method

Define grid points z; = iAz in interval 0 < x < 1, where

1
Ax =
n—+1
So zp =0, x,41 =1, and the n grid points =1, zo, ..., x, are

equally spaced inside the interval.
Let U; =~ u(z;) denote approximate solution.
We know Uy = o« and U,,+1 = [ from boundary conditions.

Idea: Replace differential equation for u(z) by system of n
algebraic equations for U; values (i = 1, 2, ..., n).
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Finite difference method

Ui ~ u(x;)

Uis1—U;
Um($i+1/2>’f3 JZm

U;—U,;_
um(xi71/2> ~ A

R.J. LeVeque, University of Washington
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Finite difference method

Uir1—Us;
Ux($i+1/2> v

Ui—=U;—1

um($i71/2> N — Az

So we can approximate second derivative at x; by:

( .)Ni U —U; Ui—Uin
Uaa\be) Ax Az Ax
1
= A2 (Ui—1 —2U; + Ui41)
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Finite difference method

Uir1—Us;
Um($i+1/2> S e

Ui—=U;—1

um(xi71/2> N — Az

So we can approximate second derivative at x; by:

( .)Ni U —U; Ui—Uin
Uaa\be) Ax Az Az
1
= A2 (Ui—1 — 2U; + Ui11)

This gives coupled system of n linear equations:

1
Ax? (

fori=1,2, ..., n. WithUy=«aand U, = 8.
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Tridiagonal linear system

a—2U0,+ Uy = —Afo(ltl) (Z 1
Uy — 2Uy 4 Uz = —Az? f(z3) (i =2)

Etc.
Forn = 5:
-2 1 0 0 0 U,
1 -2 1 0 0 U,
0 1 -2 1 0 Us
0 0 1 -2 1 Uy
0 0 1 -2 Us

R.J. LeVeque, University of Washington

f(z1) oY
f(z2) 0
= —Az? flzs) |—| O
f(z4) 0
f(xs) B
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Tridiagonal linear system

a—2U0,+ Uy = —Afo(:Bl) (Z = 1)
Uy —2Uy + Uz = —Ax?f(z3) (i =2)
Etc.
Forn = 5:

-2 1 0 0 0 Ui f(z1)
1 -2 1 0 0 U2 f(.CL‘Q)
0o 1 -2 1 0 Us | = —Ax? | f(x3)
0 O 1 -2 1 U, f(zq)
O 0 0 1 -2 Us f(xs5)

General n x n system requires O(n?) flops to solve.

Tridiagonal n x n system requires O(n) flops to solve.

Could use LAPACK routine dgtsv.
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Heat equation in 2 dimensions
One-dimensional equation generalizes to
w(z,y,t) = D(uza(z,y,t) + uyy(2,9,1)) + f(z,9,1)

on some domain in the z-y plane, with initial and boundary
conditions.

We will only consider rectangle 0 <z <1, 0 <y <1.
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Heat equation in 2 dimensions
One-dimensional equation generalizes to
w(z,y,t) = D(uza(z,y,t) + uyy(2,9,1)) + f(z,9,1)

on some domain in the z-y plane, with initial and boundary
conditions.

We will only consider rectangle 0 <z <1, 0 <y <1.

Steady state problem (with D = 1):

sz(w7y) + uyy($7y) = —f(.’E, y)

This is a PDE in two spatial variables. (Poisson Problem)
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Heat equation in 2 dimensions
One-dimensional equation generalizes to
w(z,y,t) = D(uza(z,y,t) + uyy(2,9,1)) + f(z,9,1)

on some domain in the z-y plane, with initial and boundary
conditions.

We will only consider rectangle 0 <z <1, 0 <y <1.

Steady state problem (with D = 1):

sz(w7y) + uyy($7y) = —f(.’E, y)

This is a PDE in two spatial variables. (Poisson Problem)

Laplace’s equation if f(x,y) = 0.
V? = (82 + 02) is the Laplacian operator.
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Finite difference equations for 2D Poisson problem
Let Uy; ~ u(z;, ;).
Replace differential equation
U (T, ) + uyy(2,y) = —f(2,y)
by algebraic equations
(Ui1,j = 2Uij + Uitr5)

1
vl

1
Az?

+ Uij—1—2Uij+ Uij1) = = f(zi,y5)
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Finite difference equations for 2D Poisson problem
Let Uij ~ u(xi, y]').
Replace differential equation
UJ:Z’($7 y) + uyy(ma y) = —f(CU, y)

by algebraic equations

1
A2 (Uiz1,; —2Ui 5 + Uig15)
1
T AL WUij-1 = 2Uij + Uij1) = = (i, y5)
If Az = Ay = h:

1
2 (Uic1,j + Uiy1j + Uij—1 + Ui jy1 — 4U; ) = — f (i, y5)-

R.J. LeVeque, University of Washington AMath 483/583, Lecture 23



Finite difference equations for 2D Poisson problem

1
72 (Ui—1,j + Uis1,j + Uij—1 + Ui j1 — 4Ui 5) = = f (@i, y5)-

Onn x ngrid (Az = Ay = 1/(n + 1)) this gives a linear system
of n? equations in n? unknowns.

The above equation must be satisfied fori =1, 2, ..., n and
j=1 2, ..., n.
Matrix is n? x n2,
e.g. on 100 by 100 grid, matrix is 10,000 x 10, 000.
Contains (10,000)2 = 100, 000, 000 elements.
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Finite difference equations for 2D Poisson problem

1
72 (Ui—1,j + Uis1,j + Uij—1 + Ui j1 — 4Ui 5) = = f (@i, y5)-

Onn x ngrid (Az = Ay = 1/(n + 1)) this gives a linear system
of n? equations in n? unknowns.

The above equation must be satisfied fori =1, 2, ..., n and
j=1 2, ..., n.
Matrix is n? x n2,
e.g. on 100 by 100 grid, matrix is 10,000 x 10, 000.
Contains (10,000)2 = 100, 000, 000 elements.

Matrix is sparse: each row has at most 5 nonzeros out of n?
elements! But structure is no longer tridiagonal.
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Finite difference equations for 2D Poisson problem

Row-wise ordering

13 14 15 16

9 10 11 12 stencil

Matrix has block tridiagonal structure:

T I 4 1
1|1 17 1 1 -4 1
A=z I T I T= 1 -4 1

I T 1 —4
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lterative methods

Back to one space dimension first...

Coupled system of n linear equations:
(Uz;l —2U; + Ui+1) = —A.I‘2f($i)

fori=1,2, ..., n. WithlUy=aandU,,1 = 0.

lterative method starts with initial guess U to solution and
then improves U to get UF+ fork =0, 1, ...

Note: Generally does not involve modifying matrix A.

Do not have to store matrix A at all, only know about stencil.
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Jacobi iteration

(Ui—1 —2U; + UZ'_|_1) = —Aa:Qf(xZ-)
Solve for U;:
1
U, = 3 (Ui_l +Uip1 + Afo(xi)) .

Note: With no heat source, f(z) =0,
the temperature at each point is average of neighbors.
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Jacobi iteration

(Ui—l — 2Ui + Ui-{—l) = —AJZQf({L'Z)
Solve for U;:
1
Ui = 5 (Ui—l + Ui+1 + ASCQf(.Tz)) .

Note: With no heat source, f(z) =0,
the temperature at each point is average of neighbors.

Suppose U'*l is a approximation to solution. Set

1
ylt = 5 (UW1 + Ul 4 A:an(xi)) fori=1,2, ..., n

7 1—
Repeat for k = 0, 1, 2, ... until convergence.

Can be shown to converge (eventually... very slow!)
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Slow convergence of Jacobi

Initial guess
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Slow convergence of Jacobi
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Slow convergence of Jacobi
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lterative methods

Jacobi iteration is about the worst possible iterative method.

But it's very simple, and useful as a test for parallelization.

Better iterative methods:

e Gauss-Seidel

Successive Over-Relaxation (SOR)
Conjugate gradients
Preconditioned conjugate gradients
Multigrid
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lterative methods — initialization

! allocate storage for boundary points too:
allocate(x(0:n+1), u(0:n+l), £(0:n+1))

dx = 1.d0 / (n+1.d0)
!'Somp parallel do

do i=0,n+1
! grid points:

X (1) = 1i*dx

! source term:

f(i) = 100.%exp(x (1))

! initial guess (linear function):
u(i) = alpha + x (i) * (beta-alpha)
enddo
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Jacobi iteration in Fortran

uold = u ! starting values before updating

do iter=1l,maxiter
dumax = 0.d0
+ uold(i+1l) + dx*x2+xf (1))

do i=1,n
u(i) = 0.5d0#* (uold(i-1)
dumax = max (dumax, abs(u(i)-uold(i)))
enddo

! check for convergence:
if (dumax .lt. tol) exit
uold = u ! for next iteration
enddo

Note: we must use old value at ¢ — 1 for Jacobi.

Otherwise we get the Gauss-Seidel method.
u(i) = 0.5d0x (u(i-1) + u(i+l) + dx**2*f(i))
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Jacobi iteration in Fortran

uold = u ! starting values before updating

do iter=1l,maxiter
dumax = 0.d0
+ uold(i+1l) + dx*x2+xf (1))

do i=1,n
u(i) = 0.5d0* (uold(i-1)
dumax = max (dumax, abs(u(i)-uold(i)))
enddo

! check for convergence:
if (dumax .lt. tol) exit
uold = u ! for next iteration
enddo

Note: we must use old value at ¢ — 1 for Jacobi.

Otherwise we get the Gauss-Seidel method.
u(i) = 0.5d0x (u(i-1) + u(i+l) + dx**2*f(i))

This actually converges faster!
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Jacobi with OpenMP parallel do (fine grain)

See: $UWHPSC/codes/openmp/jacobiid_omp1.f90

uold = u ! starting values before updating
do iter=1,maxiter

dumax = 0.d0

!Somp parallel do reduction (max : dumax)
do i=1,n

u(i) = 0.5d0* (uold(i-1) + uold(i+1l) + dx*x*2*f(i))
duggx = max (dumax, abs(u(i)-uold(i)))
enddo

! check for convergence:
if (dumax .lt. tol) exit

!'Somp parallel do
do i=1,n

uold (i) = u(i) ! for next iteration
enddo
enddo

Note: Forking threads twice each iteration.
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Jacobi with OpenMP — coarse grain

General Approach:
e Fork threads only once at start of program.

Each thread is responsible for some portion of the arrays,
from i=istart to i=iend.

Each iteration, must copy u to uold, update u, check for
convergence.

Convergence check requires coordination between threads
to get global dumax.

Print out final result after leaving parallel block

See code in the repository or the notes:
$UWHPSC/codes/openmp/jacobild_omp2.f90
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