AMath 483/583 - Lecture 23

Outline:

- Linear systems: LU factorization and condition number
- Heat equation and discretization
- Iterative methods

Sample codes:

- \$UWHPSC/codes/openmp/jacobi1d_omp1.f90
- \$UWHPSC/codes/openmp/jacobi1d_omp2.f90

Announcements

Homework 6 is in the notes and due next Friday.
Quizzes for this week's lectures due next Wednesday.
Office hours today 9:30-10:20.

Announcements

Homework 6 is in the notes and due next Friday.
Quizzes for this week's lectures due next Wednesday.
Office hours today 9:30-10:20.

Next week:
Monday: no class
Wednesday: Guest lecture -

Brad Chamberlain, Cray
Chapel: A Next-Generation Partitioned Global Address Space (PGAS) Language

AMath 483/583 - Lecture 23

Outline:

- Linear systems: LU factorization and condition number
- Heat equation and discretization
- Iterative methods

Sample codes:

- \$UWHPSC/codes/openmp/jacobi1d_omp1.f90
- \$UWHPSC/codes/openmp/jacobi1d_omp2.f90

DGESV - Solves a general linear system

$$
\begin{array}{ll}
\text { SUBROUTINE DGESV (} \mathrm{N}, \mathrm{NRHS}, \mathrm{~A}, ~ L D A, ~ I P I V, \\
\& & \mathrm{~B}, \mathrm{LDB}, \mathrm{INFO})
\end{array}
$$

NRHS = number of right hand sides
$B=$ matrix whose columns are right hand side(s) on input solution vector(s) on output.

LDB $=$ leading dimension of B.
INFO $=$ integer returning 0 if successful.
$A=$ matrix on input, L, U factors on output,
IPIV = Returns pivot vector (permutation of rows)
integer, dimension(N)
Row I was interchanged with row IPIV (I).

Gaussian elimination as factorization

If A is nonsingular it can be factored as

$$
P A=L U
$$

where
P is a permutation matrix (rows of identity permuted),
L is lower triangular with 1's on diagonal,
U is upper triangular.
After returning from dgesv:
A contains L and U (without the diagonal of L), IP IV gives ordering of rows in P.

Gaussian elimination as factorization

Example:

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
4 & 3 & 6 \\
2 & 3 & 4
\end{array}\right]
$$

$\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 3 & 6 \\ 2 & 3 & 4\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 / 2 & 1 & 0 \\ 1 / 2 & -1 / 3 & 1\end{array}\right]\left[\begin{array}{ccc}4 & 3 & 6 \\ 0 & 1.5 & 1 \\ 0 & 0 & 1 / 3\end{array}\right]$
$\operatorname{IPIV}=(2,3,1)$
and A comes back from DGESV as:

$$
\left[\begin{array}{ccc}
4 & 3 & 6 \\
1 / 2 & 1.5 & 1 \\
1 / 2 & -1 / 3 & 1 / 3
\end{array}\right]
$$

dgesv examples

See \$UWHP SC/codes/lapack/random.
Sample codes that solve the linear system $A x=b$ with a random $n \times n$ matrix A, where the value n is run-time input.
randomsys1.f90 is with static array allocation.
randomsys $2 . f 90$ is with dynamic array allocation.

dgesv examples

See \$UWHP SC / codes/lapack/random.
Sample codes that solve the linear system $A x=b$ with a random $n \times n$ matrix A, where the value n is run-time input.
randomsys1.f90 is with static array allocation.
randomsys $2 . f 90$ is with dynamic array allocation.
randomsys $3 . \mathrm{f} 90$ also estimates condition number of A.

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

Can bound relative error in solution in terms of relative error in data using this:

$$
A x^{*}=b^{*} \text { and } A \tilde{x}=\tilde{b} \Longrightarrow \frac{\left\|\tilde{x}-x^{*}\right\|}{\left\|x^{*}\right\|} \leq \kappa(A) \frac{\left\|\tilde{b}-b^{*}\right\|}{\left\|b^{*}\right\|}
$$

Heat Equation / Diffusion Equation

Partial differential equation (PDE) for $u(x, t)$
in one space dimension and time.
u represents temperature in a 1-dimensional metal rod.
Or concentration of a chemical diffusing in a tube of water.

Heat Equation / Diffusion Equation

Partial differential equation (PDE) for $u(x, t)$ in one space dimension and time.
u represents temperature in a 1-dimensional metal rod.
Or concentration of a chemical diffusing in a tube of water.

The PDE is

$$
u_{t}(x, t)=D u_{x x}(x, t)+f(x, t)
$$

where subscripts represent partial derivatives,
$D=$ diffusion coefficient (assumed constant in space \& time),
$f(x, t)=$ source term (heat or chemical being added/removed).

Heat Equation / Diffusion Equation

Partial differential equation (PDE) for $u(x, t)$ in one space dimension and time.
u represents temperature in a 1-dimensional metal rod.
Or concentration of a chemical diffusing in a tube of water.

The PDE is

$$
u_{t}(x, t)=D u_{x x}(x, t)+f(x, t)
$$

where subscripts represent partial derivatives,
$D=$ diffusion coefficient (assumed constant in space \& time),
$f(x, t)=$ source term (heat or chemical being added/removed).
Also need initial conditions $u(x, 0)$ and boundary conditions $u\left(x_{1}, t\right), u\left(x_{2}, t\right)$.

Steady state diffusion

If $f(x, t)=f(x)$ does not depend on time and if the boundary conditions don't depend on time, then $u(x, t)$ will converge towards steady state distribution satisfying

$$
0=D u_{x x}(x)+f(x)
$$

(by setting $u_{t}=0$.)
This is now an ordinary differential equation (ODE) for $u(x)$.

Steady state diffusion

If $f(x, t)=f(x)$ does not depend on time and if the boundary conditions don't depend on time, then $u(x, t)$ will converge towards steady state distribution satisfying

$$
0=D u_{x x}(x)+f(x)
$$

(by setting $u_{t}=0$.)
This is now an ordinary differential equation (ODE) for $u(x)$.
We can solve this on an interval, say $0 \leq x \leq 1$ with
Boundary conditions:

$$
u(0)=\alpha, \quad u(1)=\beta
$$

Steady state diffusion

More generally: Take $D=1$ or absorb in f,

$$
u_{x x}(x)=-f(x) \quad \text { for } 0 \leq x \leq 1
$$

Boundary conditions:

$$
u(0)=\alpha, \quad u(1)=\beta
$$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

Steady state diffusion

More generally: Take $D=1$ or absorb in f,

$$
u_{x x}(x)=-f(x) \quad \text { for } 0 \leq x \leq 1
$$

Boundary conditions:

$$
u(0)=\alpha, \quad u(1)=\beta
$$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

Example: $\alpha=20, \beta=60, \quad f(x)=0$ (no heat source)
Solution: $u(x)=\alpha+x(\beta-\alpha) \quad \Longrightarrow u^{\prime \prime}(x)=0$.
No heat source \Longrightarrow linear variation in steady state $\left(u_{x x}=0\right)$.

Steady state diffusion

More generally: Take $D=1$ or absorb in f,

$$
u_{x x}(x)=-f(x) \quad \text { for } 0 \leq x \leq 1
$$

Boundary conditions:

$$
u(0)=\alpha, \quad u(1)=\beta
$$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

More interesting example:
Example: $\alpha=20, \beta=60, \quad f(x)=100 e^{x}$,
Solution: $u(x)=(100 e-60) x+120-100 e^{x}$.

Steady state diffusion

Steady state diffusion

For more complicated equations, numerical methods must generally be used, giving approximations at discrete points.

Finite difference method

Define grid points $x_{i}=i \Delta x$ in interval $0 \leq x \leq 1$, where

$$
\Delta x=\frac{1}{n+1}
$$

So $x_{0}=0, x_{n+1}=1$, and the n grid points $x_{1}, x_{2}, \ldots, x_{n}$ are equally spaced inside the interval.

Finite difference method

Define grid points $x_{i}=i \Delta x$ in interval $0 \leq x \leq 1$, where

$$
\Delta x=\frac{1}{n+1}
$$

So $x_{0}=0, x_{n+1}=1$, and the n grid points $x_{1}, x_{2}, \ldots, x_{n}$ are equally spaced inside the interval.

Let $U_{i} \approx u\left(x_{i}\right)$ denote approximate solution.
We know $U_{0}=\alpha$ and $U_{n+1}=\beta$ from boundary conditions.

Finite difference method

Define grid points $x_{i}=i \Delta x$ in interval $0 \leq x \leq 1$, where

$$
\Delta x=\frac{1}{n+1}
$$

So $x_{0}=0, x_{n+1}=1$, and the n grid points $x_{1}, x_{2}, \ldots, x_{n}$ are equally spaced inside the interval.

Let $U_{i} \approx u\left(x_{i}\right)$ denote approximate solution.
We know $U_{0}=\alpha$ and $U_{n+1}=\beta$ from boundary conditions.
Idea: Replace differential equation for $u(x)$ by system of n algebraic equations for U_{i} values $(i=1,2, \ldots, n)$.

Finite difference method

$$
\begin{aligned}
& U_{i} \approx u\left(x_{i}\right) \\
& u_{x}\left(x_{i+1 / 2}\right) \approx \frac{U_{i+1}-U_{i}}{\Delta x} \\
& u_{x}\left(x_{i-1 / 2}\right) \approx \frac{U_{i}-U_{i-1}}{\Delta x}
\end{aligned}
$$

Finite difference method

$$
\begin{aligned}
& U_{i} \approx u\left(x_{i}\right) \\
& u_{x}\left(x_{i+1 / 2}\right) \approx \frac{U_{i+1}-U_{i}}{\Delta x} \\
& u_{x}\left(x_{i-1 / 2}\right) \approx \frac{U_{i}-U_{i-1}}{\Delta x}
\end{aligned}
$$

So we can approximate second derivative at x_{i} by:

$$
\begin{aligned}
u_{x x}\left(x_{i}\right) & \approx \frac{1}{\Delta x}\left(\frac{U_{i+1}-U_{i}}{\Delta x}-\frac{U_{i}-U_{i-1}}{\Delta x}\right) \\
& =\frac{1}{\Delta x^{2}}\left(U_{i-1}-2 U_{i}+U_{i+1}\right)
\end{aligned}
$$

Finite difference method

$$
\begin{aligned}
& U_{i} \approx u\left(x_{i}\right) \\
& u_{x}\left(x_{i+1 / 2}\right) \approx \frac{U_{i+1}-U_{i}}{\Delta x} \\
& u_{x}\left(x_{i-1 / 2}\right) \approx \frac{U_{i}-U_{i-1}}{\Delta x}
\end{aligned}
$$

So we can approximate second derivative at x_{i} by:

$$
\begin{aligned}
u_{x x}\left(x_{i}\right) & \approx \frac{1}{\Delta x}\left(\frac{U_{i+1}-U_{i}}{\Delta x}-\frac{U_{i}-U_{i-1}}{\Delta x}\right) \\
& =\frac{1}{\Delta x^{2}}\left(U_{i-1}-2 U_{i}+U_{i+1}\right)
\end{aligned}
$$

This gives coupled system of n linear equations:

$$
\frac{1}{\Delta x^{2}}\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=-f\left(x_{i}\right)
$$

for $i=1,2, \ldots, n$. With $U_{0}=\alpha$ and $U_{n+1}=\beta$.

Tridiagonal linear system

$$
\begin{aligned}
\alpha-2 U_{1}+U_{2} & =-\Delta x^{2} f\left(x_{1}\right) & (i=1) \\
U_{1}-2 U_{2}+U_{3} & =-\Delta x^{2} f\left(x_{2}\right) & (i=2)
\end{aligned}
$$

Etc.
For $n=5$:

$$
\left[\begin{array}{ccccc}
-2 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2
\end{array}\right]\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4} \\
U_{5}
\end{array}\right]=-\Delta x^{2}\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
f\left(x_{4}\right) \\
f\left(x_{5}\right)
\end{array}\right]-\left[\begin{array}{c}
\alpha \\
0 \\
0 \\
0 \\
\beta
\end{array}\right]
$$

Tridiagonal linear system

$$
\begin{aligned}
\alpha-2 U_{1}+U_{2} & =-\Delta x^{2} f\left(x_{1}\right) & & (i=1) \\
U_{1}-2 U_{2}+U_{3} & =-\Delta x^{2} f\left(x_{2}\right) & & (i=2)
\end{aligned}
$$

Etc.
For $n=5$:

$$
\left[\begin{array}{ccccc}
-2 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2
\end{array}\right]\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4} \\
U_{5}
\end{array}\right]=-\Delta x^{2}\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
f\left(x_{4}\right) \\
f\left(x_{5}\right)
\end{array}\right]-\left[\begin{array}{c}
\alpha \\
0 \\
0 \\
0 \\
\beta
\end{array}\right] .
$$

General $n \times n$ system requires $O\left(n^{3}\right)$ flops to solve.
Tridiagonal $n \times n$ system requires $O(n)$ flops to solve.
Could use LAPACK routine dgtsv.

Heat equation in 2 dimensions

One-dimensional equation generalizes to

$$
u_{t}(x, y, t)=D\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right)+f(x, y, t)
$$

on some domain in the $x-y$ plane, with initial and boundary conditions.

We will only consider rectangle $0 \leq x \leq 1, \quad 0 \leq y \leq 1$.

Heat equation in 2 dimensions

One-dimensional equation generalizes to

$$
u_{t}(x, y, t)=D\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right)+f(x, y, t)
$$

on some domain in the $x-y$ plane, with initial and boundary conditions.

We will only consider rectangle $0 \leq x \leq 1, \quad 0 \leq y \leq 1$.
Steady state problem (with $D=1$):

$$
u_{x x}(x, y)+u_{y y}(x, y)=-f(x, y)
$$

This is a PDE in two spatial variables. (Poisson Problem)

Heat equation in 2 dimensions

One-dimensional equation generalizes to

$$
u_{t}(x, y, t)=D\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right)+f(x, y, t)
$$

on some domain in the $x-y$ plane, with initial and boundary conditions.

We will only consider rectangle $0 \leq x \leq 1, \quad 0 \leq y \leq 1$.
Steady state problem (with $D=1$):

$$
u_{x x}(x, y)+u_{y y}(x, y)=-f(x, y)
$$

This is a PDE in two spatial variables. (Poisson Problem)
Laplace's equation if $f(x, y) \equiv 0$.
$\nabla^{2}=\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$ is the Laplacian operator.

Finite difference equations for 2D Poisson problem

Let $U_{i j} \approx u\left(x_{i}, y_{j}\right)$.

Replace differential equation

$$
u_{x x}(x, y)+u_{y y}(x, y)=-f(x, y)
$$

by algebraic equations

$$
\begin{aligned}
& \frac{1}{\Delta x^{2}}\left(U_{i-1, j}-2 U_{i, j}+U_{i+1, j}\right) \\
& \quad \quad+\frac{1}{\Delta y^{2}}\left(U_{i, j-1}-2 U_{i, j}+U_{i, j+1}\right)=-f\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Finite difference equations for 2D Poisson problem

Let $U_{i j} \approx u\left(x_{i}, y_{j}\right)$.
Replace differential equation

$$
u_{x x}(x, y)+u_{y y}(x, y)=-f(x, y)
$$

by algebraic equations

$$
\begin{aligned}
& \frac{1}{\Delta x^{2}}\left(U_{i-1, j}-2 U_{i, j}+U_{i+1, j}\right) \\
& +\frac{1}{\Delta y^{2}}\left(U_{i, j-1}-2 U_{i, j}+U_{i, j+1}\right)=-f\left(x_{i}, y_{j}\right)
\end{aligned}
$$

If $\Delta x=\Delta y=h$:

$$
\frac{1}{h^{2}}\left(U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i, j}\right)=-f\left(x_{i}, y_{j}\right)
$$

Finite difference equations for 2D Poisson problem

$$
\frac{1}{h^{2}}\left(U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i, j}\right)=-f\left(x_{i}, y_{j}\right)
$$

On $n \times n \operatorname{grid}(\Delta x=\Delta y=1 /(n+1))$ this gives a linear system of n^{2} equations in n^{2} unknowns.

The above equation must be satisfied for $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.

Matrix is $n^{2} \times n^{2}$,
e.g. on 100 by 100 grid, matrix is $10,000 \times 10,000$.

Contains $(10,000)^{2}=100,000,000$ elements.

Finite difference equations for 2D Poisson problem

$$
\frac{1}{h^{2}}\left(U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i, j}\right)=-f\left(x_{i}, y_{j}\right)
$$

On $n \times n \operatorname{grid}(\Delta x=\Delta y=1 /(n+1))$ this gives a linear system of n^{2} equations in n^{2} unknowns.

The above equation must be satisfied for $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.

Matrix is $n^{2} \times n^{2}$,
e.g. on 100 by 100 grid, matrix is $10,000 \times 10,000$.

Contains $(10,000)^{2}=100,000,000$ elements.
Matrix is sparse: each row has at most 5 nonzeros out of n^{2} elements! But structure is no longer tridiagonal.

Finite difference equations for 2D Poisson problem

Matrix has block tridiagonal structure:

$$
A=\frac{1}{h^{2}}\left[\begin{array}{cccc}
T & I & & \\
I & T & I & \\
& I & T & I \\
& & I & T
\end{array}\right] \quad T=\left[\begin{array}{rrrr}
-4 & 1 & & \\
1 & -4 & 1 & \\
& 1 & -4 & 1 \\
& & 1 & -4
\end{array}\right]
$$

Iterative methods

Back to one space dimension first...
Coupled system of n linear equations:

$$
\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=-\Delta x^{2} f\left(x_{i}\right)
$$

for $i=1,2, \ldots, n$. With $U_{0}=\alpha$ and $U_{n+1}=\beta$.
Iterative method starts with initial guess $U^{[0]}$ to solution and then improves $U^{[k]}$ to get $U^{[k+1]}$ for $k=0,1, \ldots$.

Note: Generally does not involve modifying matrix A.
Do not have to store matrix A at all, only know about stencil.

Jacobi iteration

$$
\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=-\Delta x^{2} f\left(x_{i}\right)
$$

Solve for U_{i} :

$$
U_{i}=\frac{1}{2}\left(U_{i-1}+U_{i+1}+\Delta x^{2} f\left(x_{i}\right)\right)
$$

Note: With no heat source, $f(x)=0$, the temperature at each point is average of neighbors.

Jacobi iteration

$$
\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=-\Delta x^{2} f\left(x_{i}\right)
$$

Solve for U_{i} :

$$
U_{i}=\frac{1}{2}\left(U_{i-1}+U_{i+1}+\Delta x^{2} f\left(x_{i}\right)\right)
$$

Note: With no heat source, $f(x)=0$,
the temperature at each point is average of neighbors.
Suppose $U^{[k]}$ is a approximation to solution. Set

$$
U_{i}^{[k+1]}=\frac{1}{2}\left(U_{i-1}^{[k]}+U_{i+1}^{[k]}+\Delta x^{2} f\left(x_{i}\right)\right) \text { for } i=1,2, \ldots, n .
$$

Repeat for $k=0,1,2, \ldots$ until convergence.
Can be shown to converge (eventually... very slow!)

Slow convergence of Jacobi

Slow convergence of Jacobi

Slow convergence of Jacobi

Iterative methods

Jacobi iteration is about the worst possible iterative method.
But it's very simple, and useful as a test for parallelization.

Better iterative methods:

- Gauss-Seidel
- Successive Over-Relaxation (SOR)
- Conjugate gradients
- Preconditioned conjugate gradients
- Multigrid

Iterative methods - initialization

```
! allocate storage for boundary points too:
allocate (x \((0: n+1), u(0: n+1), f(0: n+1))\)
\(d x=1 \cdot d 0 /(n+1 . d 0)\)
! \$omp parallel do
do \(i=0, n+1\)
    ! grid points:
    \(x(i)=i * d x\)
    ! source term:
    f(i) = 100.*exp(x(i))
    ! initial guess (linear function):
    \(u(i)=a l p h a+x(i) *(b e t a-a l p h a)\)
    enddo
```


Jacobi iteration in Fortran

```
uold = u ! starting values before updating
do iter=1,maxiter
    dumax = 0.d0
    do i=1,n
        u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
        dumax = max(dumax, abs(u(i)-uold(i)))
        enddo
    ! check for convergence:
    if (dumax .lt. tol) exit
    uold = u ! for next iteration
    enddo
```

Note: we must use old value at $i-1$ for Jacobi.
Otherwise we get the Gauss-Seidel method.

$$
u(i)=0.5 d 0 *(u(i-1)+u(i+1)+d x * * 2 * f(i))
$$

Jacobi iteration in Fortran

```
uold = u ! starting values before updating
do iter=1,maxiter
    dumax = 0.d0
    do i=1,n
        u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
        dumax = max(dumax, abs(u(i)-uold(i)))
        enddo
    ! check for convergence:
    if (dumax .lt. tol) exit
    uold = u ! for next iteration
    enddo
```

Note: we must use old value at $i-1$ for Jacobi.
Otherwise we get the Gauss-Seidel method.

$$
u(i)=0.5 d 0 *(u(i-1)+u(i+1)+d x * * 2 * f(i))
$$

This actually converges faster!

Jacobi with OpenMP parallel do (fine grain)

See: \$UWHPSC/codes/openmp/jacobi1d_omp1.f90

```
uold = u ! starting values before updating
do iter=1,maxiter
dumax = 0.d0
!$omp parallel do reduction(max : dumax)
do i=1,n}= = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i)
    dumax = max(dumax, abs(u(i)-uold(i)))
    enddo
! check for convergence:
if (dumax.lt. tol) exit
!$omp parallel do
do i=1,n
    uold(i) = u(i) ! for next iteration
enddo
```

Note: Forking threads twice each iteration.

Jacobi with OpenMP - coarse grain

General Approach:

- Fork threads only once at start of program.
- Each thread is responsible for some portion of the arrays, from $i=i s t a r t$ to $i=i e n d$.
- Each iteration, must copy u to uold, update u, check for convergence.
- Convergence check requires coordination between threads to get global dumax.
- Print out final result after leaving parallel block

See code in the repository or the notes:
\$UWHPSC/codes/openmp/jacobi1d_omp2.f90

