
AMath 483/583 — Lecture 22

Outline:

• MPI Master–Worker paradigm
• Linear algebra
• LAPACK and the BLAS

References:

• $UWHPSC/codes/mpi
• class notes: MPI section
• class notes: Linear algebra

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://faculty.washington.edu/rjl/classes/am583s2013/notes/mpi.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/linalg.html

Another Send/Receive example

Computing the 1-norm of a matrix,

‖A‖1 = max
j

∑
i

|aij | = max of 1-norm of column vectors

=⇒ ‖Ax‖1 ≤ ‖A‖1‖x‖1 for all x.

Sample codes are now in...

$UWHPSC/codes/mpi/matrix1norm1.f90:
Same number of processes as columns,

$UWHPSC/codes/mpi/matrix1norm2.f90:
Possibly more (or fewer) columns than processes.

The latter case shows the more typical situation where master
process must send out new work as processes finish.

Can also view in class notes: MPI section
R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://faculty.washington.edu/rjl/classes/am583s2013/notes/mpi.html

Another Send/Receive example

Master (Processor 0) sends jth column to Worker Processor j,
gets back 1-norm to store in anorm(j), j = 1, . . . , ncols

! code for Master (Processor 0):
if (proc_num == 0) then

do j=1,ncols
call MPI_SEND(a(1,j), nrows, MPI_DOUBLE_PRECISION,&

j, j, MPI_COMM_WORLD, ierr)
enddo

do j=1,ncols
call MPI_RECV(colnorm, 1, MPI_DOUBLE_PRECISION, &

MPI_ANY_SOURCE, MPI_ANY_TAG, &
MPI_COMM_WORLD, status, ierr)

jj = status(MPI_TAG)
anorm(jj) = colnorm
enddo

endif

Note: Master may receive back in any order!
MPI_ANY_SOURCE will match first to arrive.

The tag is used to tell which column’s norm has arrived (jj).
R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Send and Receive example — worker code

Master (Processor 0) sends jth column to Worker Processor j,
gets back 1-norm to store in anorm(j), j = 1, . . . , ncols

! code for Workers (Processors 1, 2, ...):

if (proc_num /= 0) then

call MPI_RECV(colvect, nrows, MPI_DOUBLE_PRECISION,&
0, MPI_ANY_TAG, &
MPI_COMM_WORLD, status, ierr)

j = status(MPI_TAG) ! this is the column number
! (should agree with proc_num)

colnorm = 0.d0
do i=1,nrows

colnorm = colnorm + abs(colvect(i))
enddo

call MPI_SEND(colnorm, 1, MPI_DOUBLE_PRECISION, &
0, j, MPI_COMM_WORLD, ierr)

endif

Note: Sends back to Process 0 with tag j.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Mathematical Software

It is best to use high-quality software as much as possible,
for several reasons:

• It will take less time to figure out how to use the software
than to write your own version. (Assuming it’s well
documented!)

• Good general software has been extensively tested on a
wide variety of problems.

• Often general software is much more sophisticated that
what you might write yourself, for example it may provide
error estimates automatically, or it may be optimized to run
fast.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Software sources

• Netlib: http://www.netlib.org

• NIST Guide to Available Mathematical Software:
http://gams.nist.gov/

• Trilinos: http://trilinos.sandia.gov/

• DOE ACTS: http://acts.nersc.gov/

• PETSc nonlinear solvers:
http://www.mcs.anl.gov/petsc/petsc-as/

• Many others!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org
http://gams.nist.gov/
http://trilinos.sandia.gov/
http://acts.nersc.gov/
http://www.mcs.anl.gov/petsc/petsc-as/

Function zeroin from Netlib

The code in $UWHPSC/codes/fortran/zeroin illustrate
how to use the function zeroin obtained from the Golden Oldies
(go) directory of Netlib.

See: http://www.netlib.org/go/index.html

Estimates a zero of the function f(x) between ax and bx within
some tolerance.

c ===
function zeroin(ax,bx,f,tol)

c ===
implicit double precision (a-h,o-z)
external f

Note: Fortran 77 style!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org
http://www.netlib.org/go/index.html

LAPACK — www.netlib.org/lapack/

Many routines for linear algebra.

Typical name: XYYZZZ

X is precision

YY is type of matrix, e.g. GE (general), BD (bidiagonal),

ZZZ is type of operation, e.g. SV (solve system),
EV (eigenvalues, vectors), SVD (singular values, vectors)

Examples:

DGESV can be used to solve a general n× n linear system in
double precision.

DGTSV can be used to solve a general n× n tridiagonal linear
system in double precision.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org/lapack/

LAPACK — www.netlib.org/lapack/

Many routines for linear algebra.

Typical name: XYYZZZ

X is precision

YY is type of matrix, e.g. GE (general), BD (bidiagonal),

ZZZ is type of operation, e.g. SV (solve system),
EV (eigenvalues, vectors), SVD (singular values, vectors)

Examples:

DGESV can be used to solve a general n× n linear system in
double precision.

DGTSV can be used to solve a general n× n tridiagonal linear
system in double precision.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org/lapack/

Installing LAPACK

On Virtual Machine or other Debian or Ubuntu Linux:

$ sudo apt-get install liblapack-dev

This will include BLAS (but not optimized for your system).

Alternatively can download tar files and compile.

See complete documentation at
http://www.netlib.org/lapack/

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org/lapack/

The BLAS

Basic Linear Algebra Subroutines

Core routines used by LAPACK (Linear Algebra Package)
and elsewhere.

Generally optimized for particular machine architectures, cache
hierarchy.

Can create optimized BLAS using
ATLAS (Automatically Tuned Linear Algebra Software)

See notes and http://www.netlib.org/blas/faq.html

• Level 1: Scalar and vector operations
• Level 2: Matrix-vector operations
• Level 3: Matrix-matrix operations

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://math-atlas.sourceforge.net/
http://www.amath.washington.edu/~rjl/uwamath583s11/sphinx/notes/html/lapack_install.html
http://www.netlib.org/blas/faq.html

The BLAS

Subroutine names start with:
• S: single precision
• D: double precision
• C: single precision complex
• Z: double precision complex

Examples:
• SAXPY: single precision replacement of y by αx+ y.
• DDOT: dot product of two vectors
• DGEMV: matrix-vector multiply, general matrices
• DGEMM: matrix-matrix multiply, general matrices
• DSYMM: matrix-matrix multiply, symmetric matrices

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Using libraries

If program.f90 uses BLAS routines...

$ gfortran -c program.f90
$ gfortran program.o -lblas

or can combine as

$ gfortran program.f90 -lblas

When linking together .o files, will look for a file called
libblas.a (probably in /usr/lib).

This is a archived static library.

Can specify different library location using
-L/path/to/library.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Using libraries

If program.f90 uses BLAS routines...

$ gfortran -c program.f90
$ gfortran program.o -lblas

or can combine as

$ gfortran program.f90 -lblas

When linking together .o files, will look for a file called
libblas.a (probably in /usr/lib).

This is a archived static library.

Can specify different library location using
-L/path/to/library.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Making blas library

Download http://www.netlib.org/blas/blas.tgz.

Put this in desired location, e.g. $HOME/lapack/blas.tgz

$ cd $HOME/lapack
$ tar -zxf blas.tgz # creates BLAS subdirectory
$ cd BLAS
$ gfortran -O3 -c *.f
$ ar cr libblas.a *.o # creates libblas.a

To use this library:

$ gfortran program.f90 -lblas \
-L$HOME/lapack/BLAS

Note: Non-optimized Fortran 77 versions.

Better approach would be to use ATLAS.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org/blas/blas.tgz
http://math-atlas.sourceforge.net/

Creating LAPACK library

Can be done from source at
http://www.netlib.org/lapack/

but somewhat more difficult.

Individual routines and dependencies can be obtained from
netlib, e.g. the double precision versions from:

http://www.netlib.org/lapack/double

Download .tgz file and untar into directory where you want to
use them, or make a library of just these files.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/double

Memory management for arrays

Often a program needs to be written to handle arrays whose
size is not known until the program is running.

Fortran 77 approaches:
• Allocate arrays large enough for any application,
• Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will
probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Memory management for arrays

Often a program needs to be written to handle arrays whose
size is not known until the program is running.

Fortran 77 approaches:
• Allocate arrays large enough for any application,
• Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will
probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

DGESV — Solves a general linear system

http://www.netlib.org/lapack/double/dgesv.f

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV,
& B, LDB, INFO)

N = size of system (square N ×N)

A = matrix on input, L,U factors on output,
dimension(LDA,K) with LDA, K >= N

LDA = leading dimension of A
(number of rows in declaration of A)

Example:

real(kind=8) dimension(100,500) :: a
! fill a(1:20, 1:20) with 20x20 matrix
n = 20
lda = 100

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

http://www.netlib.org/lapack/double/dgesv.f

DGESV — Solves a general linear system

Example:

real(kind=8), dimension(100,500) :: a
real(kind=8), dimension(200,400) :: b
integer, dimension(600) :: ipiv
! fill a(1:20, 1:20) with 20x20 matrix
! b(1:20, 1:3) with 3 right hand sides

n = 20; nrhs = 3; lda = 100; ldb = 200

call dgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

What is passed to dgesv is start_address, the address of
first element of a. (Matrix is stored by columns)

Whenever a(i,j) appears in code, address is:

address = start_address + (j-1)*lda + (i-1)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

DGESV — Solves a general linear system

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV,
& B, LDB, INFO)

NRHS = number of right hand sides

B = matrix whose columns are right hand side(s) on input
solution vector(s) on output.

LDB = leading dimension of B.

INFO = integer returning 0 if successful.

A = matrix on input, L,U factors on output,

IPIV = Returns pivot vector (permutation of rows)
integer, dimension(N)
Row I was interchanged with row IPIV(I).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Gaussian elimination as factorization

If A is nonsingular it can be factored as

PA = LU

where

P is a permutation matrix (rows of identity permuted),

L is lower triangular with 1’s on diagonal,

U is upper triangular.

After returning from dgesv:
A contains L and U (without the diagonal of L),
IPIV gives ordering of rows in P .

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

Gaussian elimination as factorization

Example:

A =

 2 1 3
4 3 6
2 3 4


 0 1 0

0 0 1
1 0 0

 2 1 3
4 3 6
2 3 4

 =

 1 0 0
1/2 1 0
1/2 −1/3 1

 4 3 6
0 1.5 1
0 0 1/3


IPIV = (2,3,1)

and A ends up as  4 3 6
1/2 1.5 1
1/2 −1/3 1/3



R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

dgesv examples

See $UWHPSC/codes/lapack/random.

Sample codes that solve the linear system Ax = b with a
random n× n matrix A, where the value n is run-time input.

randomsys1.f90 is with static array allocation.

randomsys2.f90 is with dynamic array allocation.

randomsys3.f90 also estimates condition number of A.

κ(A) = ‖A‖ ‖A−1‖

Can bound relative error in solution in terms of relative error in
data using this:

Ax∗ = b∗ and Ax̃ = b̃ =⇒ ‖x̃− x∗‖
‖x∗‖

≤ κ(A)‖b̃− b
∗‖

‖b∗‖

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

dgesv examples

See $UWHPSC/codes/lapack/random.

Sample codes that solve the linear system Ax = b with a
random n× n matrix A, where the value n is run-time input.

randomsys1.f90 is with static array allocation.

randomsys2.f90 is with dynamic array allocation.

randomsys3.f90 also estimates condition number of A.

κ(A) = ‖A‖ ‖A−1‖

Can bound relative error in solution in terms of relative error in
data using this:

Ax∗ = b∗ and Ax̃ = b̃ =⇒ ‖x̃− x∗‖
‖x∗‖

≤ κ(A)‖b̃− b
∗‖

‖b∗‖

R.J. LeVeque, University of Washington AMath 483/583, Lecture 22

	Lecture 22
	MPI: master-worker example
	Software
	LAPACK

