
AMath 483/583 — Lecture 21

Outline:

• Review MPI, reduce and bcast
• MPI send and receive
• Master–Worker paradigm

References:

• $UWHPSC/codes/mpi
• class notes: MPI section
• class notes: MPI section of bibliography

• MPI Standard
• OpenMPI

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

http://faculty.washington.edu/rjl/classes/am583s2013/notes/mpi.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/biblio.html#biblio_mpi
http://www.mcs.anl.gov/research/projects/mpi/
http://www.open-mpi.org/

MPI — Simple example

program test1
use mpi
implicit none
integer :: ierr, numprocs, proc_num,

call mpi_init(ierr)
call mpi_comm_size(MPI_COMM_WORLD, numprocs, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, proc_num, ierr)

print *, ’Hello from Process ’, proc_num, &
’ of ’, numprocs, ’ processes’

call mpi_finalize(ierr)

end program test1

Always need to: use mpi,
Start with mpi_init,
End with mpi_finalize.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Compiling and running MPI code (Fortran)

Try this test:

$ cd $UWHPSC/codes/mpi
$ mpif90 test1.f90
$ mpiexec -n 4 a.out

You should see output like:

Hello from Process number 1 of 4 processes
Hello from Process number 3 of 4 processes
Hello from Process number 0 of 4 processes
Hello from Process number 2 of 4 processes

Note: Number of processors is specified with mpiexec.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Communicators

All communication takes place in groups of processes.

Communication takes place in some context.

A group and a context are combined in a communicator.

MPI_COMM_WORLD is a communicator provided by default that
includes all processors.

MPI_COMM_SIZE(comm, numprocs, ierr) returns the
number of processors in communicator comm.

MPI_COMM_RANK(comm, proc_num, ierr) returns the
rank of this processor in communicator comm.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Communicators

All communication takes place in groups of processes.

Communication takes place in some context.

A group and a context are combined in a communicator.

MPI_COMM_WORLD is a communicator provided by default that
includes all processors.

MPI_COMM_SIZE(comm, numprocs, ierr) returns the
number of processors in communicator comm.

MPI_COMM_RANK(comm, proc_num, ierr) returns the
rank of this processor in communicator comm.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

mpi module

The mpi module includes:

Subroutines such as mpi_init, mpi_comm_size,
mpi_comm_rank, ...

Global variables such as
MPI_COMM_WORLD: a communicator,
MPI_INTEGER: used to specify the type of data being sent
MPI_SUM: used to specify a type of reduction

Remember: Fortran is case insensitive:
mpi_init is the same as MPI_INIT.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI functions

There are 125 MPI functions.

Can write many program with these 8:
• MPI_INIT(ierr) Initialize
• MPI_FINALIZE(ierr) Finalize
• MPI_COMM_SIZE(...) Number of processors
• MPI_COMM_RANK(...) Rank of this processor

• MPI_SEND(...) Send a message
• MPI_RCV(...) Receive a message

• MPI_BCAST(...) Broadcast to other processors
• MPI_REDUCE(...) Reduction operation

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Reduce

Examples: Compute ‖x‖∞ = maxi |xi| for a distributed vector:
(each process has some subset of x elements)

xnorm_proc = 0.d0
! set istart and iend for each process
do i=istart,iend

xnorm_proc = max(xnorm_proc, abs(x(i)))
enddo

call MPI_REDUCE(xnorm_proc, xnorm, 1, &
MPI_DOUBLE_PRECISION, MPI_MAX, 0, &
MPI_COMM_WORLD,ierr)

if (proc_num == 0) print "norm of x = ", xnorm

Processors do not exit from MPI_REDUCE until all have called
the subroutine.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Normalize the vector x: Replace x by x/‖x‖∞

! compute xnorm_proc on each process as before...

call MPI_REDUCE(xnorm_proc, xnorm, 1, &
MPI_DOUBLE_PRECISION,MPI_MAX, 0, &
MPI_COMM_WORLD,ierr)

! only Process 0 has the value of xnorm

call MPI_BCAST(xnorm, 1, &
MPI_DOUBLE_PRECISION, 0, &
MPI_COMM_WORLD,ierr)

! now every process has the value of xnorm

do i=istart,iend
x(i) = x(i) / xnorm
enddo

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI AllReduce

To make a reduction available to all processes:

call MPI_REDUCE(xnorm_proc, xnorm, 1, &
MPI_DOUBLE_PRECISION,MPI_MAX, 0, &
MPI_COMM_WORLD,ierr)

! only Process 0 has the value of xnorm

call MPI_BCAST(xnorm, 1, &
MPI_DOUBLE_PRECISION, 0, &
MPI_COMM_WORLD,ierr)

One-step alternative: simpler and perhaps more efficient...

call MPI_ALLREDUCE(xnorm_proc, xnorm, 1, &
MPI_DOUBLE_PRECISION,MPI_MAX, &
MPI_COMM_WORLD,ierr)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Remember — no shared memory

Suppose all of vector x is stored on memory of Process 0,

We want to normalize x (using more than one processor),

and replace x by normalized version in memory of Process 0.

We would have to:

• Send parts of x to other processes,
• Compute xnorm_proc on each process,
• Use MPI_ALLREDUCE to combine into xnorm

and broadcast to all processes,
• Normalize part of x on each process,
• Send each part of normalized x back to Process 0.

Communication cost will probably make this much slower than
just normalizing all of x on Process 0!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Remember — no shared memory

Suppose all of vector x is stored on memory of Process 0,

We want to normalize x (using more than one processor),

and replace x by normalized version in memory of Process 0.

We would have to:

• Send parts of x to other processes,
• Compute xnorm_proc on each process,
• Use MPI_ALLREDUCE to combine into xnorm

and broadcast to all processes,
• Normalize part of x on each process,
• Send each part of normalized x back to Process 0.

Communication cost will probably make this much slower than
just normalizing all of x on Process 0!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Remember — no shared memory

Suppose all of vector x is stored on memory of Process 0,

We want to normalize x (using more than one processor),

and replace x by normalized version in memory of Process 0.

We would have to:

• Send parts of x to other processes,
• Compute xnorm_proc on each process,
• Use MPI_ALLREDUCE to combine into xnorm

and broadcast to all processes,
• Normalize part of x on each process,
• Send each part of normalized x back to Process 0.

Communication cost will probably make this much slower than
just normalizing all of x on Process 0!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Remember — no shared memory

Might be worthwhile if much more work is required for each
element of x.

Suppose all of vector x is stored on memory of Process 0,

Want to solve an expensive differential equation
with different initial conditions given by elements of x,

and then collect all results on Process 0.

Master–Worker paradigm:

• Process 0 sends different chunks of x to Process 1, 2, . . .

• Each process grinds away to solve differential equations

• Each process sends results back to Process 0.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Remember — no shared memory

Might be worthwhile if much more work is required for each
element of x.

Suppose all of vector x is stored on memory of Process 0,

Want to solve an expensive differential equation
with different initial conditions given by elements of x,

and then collect all results on Process 0.

Master–Worker paradigm:

• Process 0 sends different chunks of x to Process 1, 2, . . .

• Each process grinds away to solve differential equations

• Each process sends results back to Process 0.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Send and Receive

MPI_BCAST sends from one process to all processes.

Often want to send selectively from Process i to Process j.

Use MPI_SEND and MPI_RECV.

Need a way to tag messages so they can be identified.

The parameter tag is an integer that can be matched to
identify a message.

Tag can also be used to provide information about what is
being sent, for example if a Master process sends rows of a
matrix to other processes, the tag might be the row number.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Send and Receive

MPI_BCAST sends from one process to all processes.

Often want to send selectively from Process i to Process j.

Use MPI_SEND and MPI_RECV.

Need a way to tag messages so they can be identified.

The parameter tag is an integer that can be matched to
identify a message.

Tag can also be used to provide information about what is
being sent, for example if a Master process sends rows of a
matrix to other processes, the tag might be the row number.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Send

Send value(s) from this Process to Process dest.

General form:

call MPI_SEND(start, count, &
datatype, dest, &
tag, comm, ierr)

where:
• start: starting address (variable, array element)
• count: number of elements to send
• datatype: type of each element
• dest: destination process
• tag: identifier tag (integer between 0 and 32767)
• comm: communicator

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Receive

Receive value(s) from Process source with label tag.

General form:

call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)

where:
• source: source process
• tag: identifier tag (integer between 0 and 32767)
• comm: communicator
• status: integer array of length MPI_STATUS_SIZE.

source could be MPI_ANY_SOURCE to match any source.

tag could be MPI_ANY_TAG to match any tag.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Receive

Receive value(s) from Process source with label tag.

General form:

call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)

where:
• source: source process
• tag: identifier tag (integer between 0 and 32767)
• comm: communicator
• status: integer array of length MPI_STATUS_SIZE.

source could be MPI_ANY_SOURCE to match any source.

tag could be MPI_ANY_TAG to match any tag.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Send and Receive — simple example

if (proc_num == 4) then
i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &

MPI_COMM_WORLD, ierr)
endif

if (proc_num == 3) then
call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &

MPI_COMM_WORLD, status, ierr)
print *, "j = ", j
endif

Processor 3 will print j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)

Blocking Receive: Processor 3 won’t return from MPI_RECV
until message is received.
Run-time error if num_procs <= 4 (Procs are 0,1,2,3)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Send and Receive — simple example

if (proc_num == 4) then
i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &

MPI_COMM_WORLD, ierr)
endif

if (proc_num == 3) then
call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &

MPI_COMM_WORLD, status, ierr)
print *, "j = ", j
endif

Processor 3 will print j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)

Blocking Receive: Processor 3 won’t return from MPI_RECV
until message is received.
Run-time error if num_procs <= 4 (Procs are 0,1,2,3)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Send and Receive — simple example

if (proc_num == 4) then
i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &

MPI_COMM_WORLD, ierr)
endif

if (proc_num == 3) then
call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &

MPI_COMM_WORLD, status, ierr)
print *, "j = ", j
endif

Processor 3 will print j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)

Blocking Receive: Processor 3 won’t return from MPI_RECV
until message is received.

Run-time error if num_procs <= 4 (Procs are 0,1,2,3)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Send and Receive — simple example

if (proc_num == 4) then
i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &

MPI_COMM_WORLD, ierr)
endif

if (proc_num == 3) then
call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &

MPI_COMM_WORLD, status, ierr)
print *, "j = ", j
endif

Processor 3 will print j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)

Blocking Receive: Processor 3 won’t return from MPI_RECV
until message is received.
Run-time error if num_procs <= 4 (Procs are 0,1,2,3)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Send/Receive example

Pass value of i from Processor 0 to 1 to 2 ... to num_procs-1

if (proc_num == 0) then

i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 1, 21, &

MPI_COMM_WORLD, ierr)
endif

else if (proc_num < num_procs - 1) then

call MPI_RECV(i, 1, MPI_INTEGER, proc_num-1, 21, &
MPI_COMM_WORLD, status, ierr)

call MPI_SEND(i, 1, MPI_INTEGER, proc_num+1, 21, &
MPI_COMM_WORLD, ierr)

else if (proc_num == num_procs - 1) then

call MPI_RECV(i, 1, MPI_INTEGER, proc_num-1, 21, &
MPI_COMM_WORLD, status, ierr)

print *, "i = ", i
endif

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Receive

Receive value(s) from Process source with label tag.

General form:

call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)

where:
• source: source process
• tag: identifier tag (integer between 0 and 32767)
• comm: communicator
• status: integer array of length MPI_STATUS_SIZE.

source could be MPI_ANY_SOURCE to match any source.

tag could be MPI_ANY_TAG to match any tag.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Receive

Receive value(s) from Process source with label tag.

General form:

call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)

where:
• source: source process
• tag: identifier tag (integer between 0 and 32767)
• comm: communicator
• status: integer array of length MPI_STATUS_SIZE.

source could be MPI_ANY_SOURCE to match any source.

tag could be MPI_ANY_TAG to match any tag.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

MPI Receive — status argument

call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)

Elements of the status array give additional useful information
about the message received.

In particular,

status(MPI_SOURCE) is the source of the message,
May be needed if source = MPI_ANY_SOURCE.

status(MPI_TAG) is the tag of the message received,
May be needed if tag = MPI_ANY_TAG.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Another Send/Receive example

Master (Processor 0) sends jth column to Worker Processor j,
gets back 1-norm to store in anorm(j), j = 1, . . . , ncols

! code for Master (Processor 0):
if (proc_num == 0) then

do j=1,ncols
call MPI_SEND(a(1,j), nrows, MPI_DOUBLE_PRECISION,&

j, j, MPI_COMM_WORLD, ierr)
enddo

do j=1,ncols
call MPI_RECV(colnorm, 1, MPI_DOUBLE_PRECISION, &

MPI_ANY_SOURCE, MPI_ANY_TAG, &
MPI_COMM_WORLD, status, ierr)

jj = status(MPI_TAG)
anorm(jj) = colnorm
enddo

endif

Note: Master may receive back in any order!
MPI_ANY_SOURCE will match first to arrive.

The tag is used to tell which column’s norm has arrived (jj).
R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Send and Receive example — worker code

Master (Processor 0) sends jth column to Worker Processor j,
gets back 1-norm to store in anorm(j), j = 1, . . . , ncols

! code for Workers (Processors 1, 2, ...):

if (proc_num /= 0) then

call MPI_RECV(colvect, nrows, MPI_DOUBLE_PRECISION,&
0, MPI_ANY_TAG, &
MPI_COMM_WORLD, status, ierr)

j = status(MPI_TAG) ! this is the column number
! (should agree with proc_num)

colnorm = 0.d0
do i=1,nrows

colnorm = colnorm + abs(colvect(i))
enddo

call MPI_SEND(colnorm, 1, MPI_DOUBLE_PRECISION, &
0, j, MPI_COMM_WORLD, ierr)

endif

Note: Sends back to Process 0 with tag j.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

Send may be blocking

if (proc_num == 4) then
i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &

MPI_COMM_WORLD, ierr)
call MPI_RECV(j, 1, MPI_INTEGER, 3, 22, &

MPI_COMM_WORLD, status, ierr)
endif

if (proc_num == 3) then
j = 66
call MPI_SEND(j, 1, MPI_INTEGER, 4, 22, &

MPI_COMM_WORLD, ierr)
call MPI_RECV(i, 1, MPI_INTEGER, 4, 21, &

MPI_COMM_WORLD, status, ierr)
endif

Both processors might get stuck in MPI_SEND!
May depend on size of data and send buffer.

Blocking send: MPI_SSEND. See documentation

There are also non-blocking sends and receives:
MPI_ISEND, MPI_IRECV

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

http://www.mcs.anl.gov/research/projects/mpi/sendmode.html

Send may be blocking

if (proc_num == 4) then
i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &

MPI_COMM_WORLD, ierr)
call MPI_RECV(j, 1, MPI_INTEGER, 3, 22, &

MPI_COMM_WORLD, status, ierr)
endif

if (proc_num == 3) then
j = 66
call MPI_SEND(j, 1, MPI_INTEGER, 4, 22, &

MPI_COMM_WORLD, ierr)
call MPI_RECV(i, 1, MPI_INTEGER, 4, 21, &

MPI_COMM_WORLD, status, ierr)
endif

Both processors might get stuck in MPI_SEND!
May depend on size of data and send buffer.

Blocking send: MPI_SSEND. See documentation

There are also non-blocking sends and receives:
MPI_ISEND, MPI_IRECV

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

http://www.mcs.anl.gov/research/projects/mpi/sendmode.html

Non-blocking receive

call MPI_IRECV(start, count, datatype, &
source, tag, comm, request, ierror)

Additional argument: request.

Program continues after initiating receive,

Can later check if it has finished with

call MPI_TEST(request, flag, status, ierror)

flag is logical output variable.

Or can later wait for it to finish with

call MPI_WAIT(request, status, ierror)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 21

	Lecture 21
	MPI

