AMath 483/583 — Lecture 20

Outline:

- Adaptive quadrature, recursive functions
- · Load balancing with OpenMP
- · nested forking

Code:

• \$UWHPSC/codes/adaptive_quadrature

Problem: Approximate

$$\int_{-2}^{4} e^{-\beta^2 x^2} + \sin(x) \, dx = \left[\frac{\sqrt{\pi}}{2\beta} \operatorname{erf}(\beta x) - \cos(x) \right]_{-2}^{4}$$

where erf is the error function.

$$\beta = 10$$
:

Idea: Subdivide into subintervals and apply Trapezoid or Simpson's Rule on each.

Use larger intervals where f(x) is smoother. Automate!

Ideas:

•
$$\int_a^b f(x) dx = \int_a^{(a+b)/2} f(x) dx + \int_{(a+b)/2}^b f(x) dx$$
.

Ideas:

•
$$\int_a^b f(x) dx = \int_a^{(a+b)/2} f(x) dx + \int_{(a+b)/2}^b f(x) dx$$
.

 If we split the interval in half and the error on each half is less than to1/2 then the total error is less than to1.

Ideas:

•
$$\int_a^b f(x) dx = \int_a^{(a+b)/2} f(x) dx + \int_{(a+b)/2}^b f(x) dx$$
.

- If we split the interval in half and the error on each half is less than tol/2 then the total error is less than tol.
- Simpson's Rule is much more accurate than Trapezoid so the difference between the two is a good estimate of the error in Trapezoid.

Ideas:

•
$$\int_a^b f(x) dx = \int_a^{(a+b)/2} f(x) dx + \int_{(a+b)/2}^b f(x) dx$$
.

- If we split the interval in half and the error on each half is less than tol/2 then the total error is less than tol.
- Simpson's Rule is much more accurate than Trapezoid so the difference between the two is a good estimate of the error in Trapezoid.
- If the error estimate on either half is greater than to1/2, then recursively subdivide that interval in half.

Recursive subroutine example

Compute m! recursively,

```
Using m! = m(m-1)(m-2) \cdots 3 \cdot 2 \cdot 1 = m (m-1)!
```

```
recursive subroutine myfactorial(m,mfact)
implicit none
integer, intent(in) :: m
integer, intent(out) :: mfact
integer :: m1fact
if (m <= 1) then
    mfact = 1
e1se
    call myfactorial(m-1, m1fact)
    mfact = m * m1fact
endif
end subroutine myfactorial
```

\$UWHPSC/adaptive quadtrature/factorial example.f90

Ideas:

•
$$\int_a^b f(x) dx = \int_a^{(a+b)/2} f(x) dx + \int_{(a+b)/2}^b f(x) dx$$
.

- If we split the interval in half and the error on each half is less than tol/2 then the total error is less than tol.
- Simpson's Rule is much more accurate than Trapezoid so the difference between the two is a good estimate of the error in Trapezoid.
- If the error estimate on either half is greater than to1/2, then recursively subdivide that interval in half.

See codes in \$UWHPSC/codes/adaptive_quadrature

- ../serial: Serial code with recursive subroutine
- .../openmp1: OpenMP splitting into two pieces
- ../openmp2: OpenMP with nested forks

Adaptive quadrature — recursion

Selected lines from

\$UWHPSC/codes/adaptive_quadrature/serial/adapquad_mod.f9

```
18
     recursive subroutine adapquad(f,a,b,tol,intest,errest,level,fa,fb)
19
         implicit none
         real(kind=8), intent(in) :: a,b,tol
20
21
         real(kind=8), intent(out) :: intest
         real(kind=8), optional, intent(out) :: errest
22
23
         integer, optional, intent(in) :: level
         real(kind=8), optional, intent(in) :: fa,fb
24
25
         real(kind=8), external :: f
26
         ! Local variables:
27
         real(kind=8) :: xmid, fmid, trapezoid, simpson, errest1, errest2, &
28
29
                         intest1, intest2, tol2, f a, f b
         integer :: thislevel, nextlevel
```

Adaptive quadrature — recursion

Using optional subroutine parameters in Fortran 90:

```
if (.not. present(level)) then
38
39
             ! called from main program, which is Level=1:
40
             thislevel = 1
41
         else
             thislevel = level
42
43
         endif
44
45
         write(8,801) a,b,thislevel
46
47
48
         if (present(fa)) then
             f_a = fa
49
50
         else
51
             fa = f(a)
52
         endif
```

Adaptive quadrature — recursion

Main recursion step:

```
78
         if ((errest > tol) .and. (thislevel < maxlevel)) then</pre>
79
             ! recursively apply this subroutine to each half, with
80
             ! tolerance tol/2 for each, and nextlevel = thislevel+1:
81
             tol2 = tol / 2.d0
82
             nextlevel = thislevel + 1
83
             call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f a,fmid)
             call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f b)
84
85
             intest = intest1 + intest2
86
             errest = errest1 + errest2
87
         else
88
             ! Use the trapezoid approximation.
             ! Note that simpson would be better,
89
90
             ! but we have error estimate for trapezoid
91
             intest = trapezoid
92
         endif
```



```
approx = 0.1982448782099E+00
true = 0.4147421694070E+00
error = -0.216E+00
errest = -0.415E-01
```



```
approx = 0.4074167985367E+00
true = 0.4147421694070E+00
error = -0.733E-02
errest = -0.730E-02
g was evaluated 53 times
```



```
approx = 0.4144742980922E+00
true = 0.4147421694070E+00
error = -0.268E-03
errest = 0.119E-01
g was evaluated 115 times
```

Adaptive quadrature — OpenMP

First attempt: split up original interval into 2 pieces in main program...

```
! $UWHPSC/codes/adaptive_quadrature/openmp1/testquad.f90
    xmid = 0.5d0*(a+b)
    tol2 = tol / 2.d0

!$omp parallel sections
!$omp section
        call adapquad(g,a,xmid,tol2,intest1,errest1)
!$omp section
        call adapquad(g,xmid,b,tol2,intest2,errest2)
!$omp end parallel sections

int_approx = intest1 + intest2
    errest = errest1 + errest2
```

May exhibit poor load balancing if much more work has to be done in one half than the other.

Two threads, with OpenMP applied at top level only.

Thread 0 works only on left half, Thread 1 works only on right half

Two threads, with OpenMP applied at top level only.

Blue: Thread 0

Note that Thread 1 is done before Thread 0

Red: Thread 1

Poor load balancing if function is much smoother on one half of interval than the other!

Adaptive quadrature — OpenMP

Better approach: Allow nested calls to OpenMP.

```
! $UWHPSC/codes/adaptive quadrature/openmp2/testquad.f90
! Allow nested OpenMP threading:
!$ call omp_set_nested(.true.)
call adapquad(q, a, b, tol, int_approx, errest)
l ========
! $UWHPSC/codes/adaptive quadrature/openmp2/adapquad mod.f90
if ((errest > tol) .and. (thislevel < maxlevel)) then
   ! recursively apply this subroutine to each half, with
    ! tolerance tol/2 for each, and nextlevel = thislevel+1:
    tol2 = tol / 2.d0
    nextlevel = thislevel + 1
    !$omp parallel sections
    !$omp section
        call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f_a,fmid
    !$omp section
        call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f_b
    !$omp end parallel sections
```

Two threads, with nested OpenMP calls

Next available thread takes each interval to be handled.

Running same thing a second time gives different pattern:

Next available thread takes each interval to be handled.

Two threads, with nested OpenMP calls

Next available thread takes each interval to be handled.

Software for adaptive quadrature

Much more sophisticated quadrature routines are available...

QUADPACK: Fortran 77

```
http://en.wikipedia.org/wiki/QUADPACK
```

SciPy: scipy.integrate.guad uses QUADPACK:

```
In [1]: from scipy import integrate as I
In [2]: beta = 10.
In [3]: f = lambda x: exp(-beta**2 * x**2) + sin(x)
In [4]: I.quad(f, -2., 4.)
Out[4]: (0.4147421694070216, 8.440197311887498e-09)
```

Returns estimate of integral and of error.

Use I. quad? or I? to learn more.