
AMath 483/583 — Lecture 20

Outline:

• Adaptive quadrature, recursive functions
• Load balancing with OpenMP
• nested forking

Code:

• $UWHPSC/codes/adaptive_quadrature
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Adaptive quadrature

Problem: Approximate∫ 4

−2
e−β

2x2 + sin(x) dx =

[√
π

2β
erf(βx)− cos(x)

]4
−2

where erf is the error function.

β = 10:
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Adaptive quadrature

Idea: Subdivide into subintervals and apply Trapezoid or
Simpson’s Rule on each.

Use larger intervals where f(x) is smoother. Automate!
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Adaptive quadrature

Ideas:

•
∫ b

a
f(x) dx =

∫ (a+b)/2

a
f(x) dx+

∫ b

(a+b)/2
f(x) dx.

• If we split the interval in half and the error on each half is
less than tol/2 then the total error is less than tol.

• Simpson’s Rule is much more accurate than Trapezoid so
the difference between the two is a good estimate of the
error in Trapezoid.

• If the error estimate on either half is greater than tol/2,
then recursively subdivide that interval in half.
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Recursive subroutine example

Compute m! recursively,

Using m! = m(m− 1)(m− 2) · · · 3 · 2 · 1 = m (m− 1)!

$UWHPSC/adaptive_quadtrature/factorial_example.f90
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Adaptive Quadrature

See codes in $UWHPSC/codes/adaptive_quadrature

../serial: Serial code with recursive subroutine

../openmp1: OpenMP splitting into two pieces

../openmp2: OpenMP with nested forks
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Adaptive quadrature — recursion

Selected lines from
$UWHPSC/codes/adaptive_quadrature/serial/adapquad_mod.f90
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Adaptive quadrature — recursion

Using optional subroutine parameters in Fortran 90:
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Adaptive quadrature — recursion

Main recursion step:
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Adaptive quadrature with tol = 0.5

approx = 0.1982448782099E+00
true = 0.4147421694070E+00
error = -0.216E+00
errest = -0.415E-01
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Adaptive quadrature with tol = 0.1

approx = 0.4074167985367E+00
true = 0.4147421694070E+00
error = -0.733E-02
errest = -0.730E-02
g was evaluated 53 times
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Adaptive quadrature with tol = 0.02

approx = 0.4144742980922E+00
true = 0.4147421694070E+00
error = -0.268E-03
errest = 0.119E-01
g was evaluated 115 times
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Adaptive quadrature — OpenMP

First attempt: split up original interval into 2 pieces in main
program...

! $UWHPSC/codes/adaptive_quadrature/openmp1/testquad.f90

xmid = 0.5d0*(a+b)
tol2 = tol / 2.d0

!$omp parallel sections
!$omp section

call adapquad(g,a,xmid,tol2,intest1,errest1)
!$omp section

call adapquad(g,xmid,b,tol2,intest2,errest2)
!$omp end parallel sections

int_approx = intest1 + intest2
errest = errest1 + errest2

May exhibit poor load balancing if much more work has to be
done in one half than the other.
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Adaptive quadrature with tol = 0.1

Two threads, with OpenMP applied at top level only.

Thread 0 works only on left half, Blue: Thread 0
Thread 1 works only on right half Red: Thread 1
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Adaptive quadrature with tol = 0.01

Two threads, with OpenMP applied at top level only.

Note that Thread 1 is Blue: Thread 0
done before Thread 0 Red: Thread 1

Poor load balancing if function is much smoother
on one half of interval than the other!
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Adaptive quadrature — OpenMP

Better approach: Allow nested calls to OpenMP.

! $UWHPSC/codes/adaptive_quadrature/openmp2/testquad.f90

! Allow nested OpenMP threading:
!$ call omp_set_nested(.true.)

call adapquad(g, a, b, tol, int_approx, errest)

!============

! $UWHPSC/codes/adaptive_quadrature/openmp2/adapquad_mod.f90

if ((errest > tol) .and. (thislevel < maxlevel)) then
! recursively apply this subroutine to each half, with
! tolerance tol/2 for each, and nextlevel = thislevel+1:
tol2 = tol / 2.d0
nextlevel = thislevel + 1

!$omp parallel sections
!$omp section

call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f_a,fmid)
!$omp section

call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f_b)
!$omp end parallel sections
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Adaptive quadrature with tol = 0.1

Two threads, with nested OpenMP calls

Next available thread takes Blue: Thread 0
each interval to be handled. Red: Thread 1
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Adaptive quadrature with tol = 0.1

Running same thing a second time gives different pattern:

Next available thread takes Blue: Thread 0
each interval to be handled. Red: Thread 1
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Adaptive quadrature with tol = 0.01

Two threads, with nested OpenMP calls

Next available thread takes Blue: Thread 0
each interval to be handled. Red: Thread 1
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Software for adaptive quadrature

Much more sophisticated quadrature routines are available...

QUADPACK: Fortran 77

http://en.wikipedia.org/wiki/QUADPACK

SciPy: scipy.integrate.quad uses QUADPACK:

In [1]: from scipy import integrate as I
In [2]: beta = 10.
In [3]: f = lambda x: exp(-beta**2 * x**2) + sin(x)

In [4]: I.quad(f, -2., 4.)
Out[4]: (0.4147421694070216, 8.440197311887498e-09)

Returns estimate of integral and of error.
Use I.quad? or I? to learn more.
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