AMath 483/583 - Lecture 20

Outline:

- Adaptive quadrature, recursive functions
- Load balancing with OpenMP
- nested forking

Code:

- \$UWHPSC/codes/adaptive_quadrature

Adaptive quadrature

Problem: Approximate

$$
\int_{-2}^{4} e^{-\beta^{2} x^{2}}+\sin (x) d x=\left[\frac{\sqrt{\pi}}{2 \beta} \operatorname{erf}(\beta x)-\cos (x)\right]_{-2}^{4}
$$

where erf is the error function.
$\beta=10$:

Adaptive quadrature

Idea: Subdivide into subintervals and apply Trapezoid or Simpson's Rule on each.

Use larger intervals where $f(x)$ is smoother. Automate!

Adaptive quadrature

Ideas:

$$
\text { - } \int_{a}^{b} f(x) d x=\int_{a}^{(a+b) / 2} f(x) d x+\int_{(a+b) / 2}^{b} f(x) d x
$$

Adaptive quadrature

Ideas:

- $\int_{a}^{b} f(x) d x=\int_{a}^{(a+b) / 2} f(x) d x+\int_{(a+b) / 2}^{b} f(x) d x$.
- If we split the interval in half and the error on each half is less than tol/2 then the total error is less than tol.

Adaptive quadrature

Ideas:

- $\int_{a}^{b} f(x) d x=\int_{a}^{(a+b) / 2} f(x) d x+\int_{(a+b) / 2}^{b} f(x) d x$.
- If we split the interval in half and the error on each half is less than tol/2 then the total error is less than tol.
- Simpson's Rule is much more accurate than Trapezoid so the difference between the two is a good estimate of the error in Trapezoid.

Adaptive quadrature

Ideas:

- $\int_{a}^{b} f(x) d x=\int_{a}^{(a+b) / 2} f(x) d x+\int_{(a+b) / 2}^{b} f(x) d x$.
- If we split the interval in half and the error on each half is less than tol/2 then the total error is less than tol.
- Simpson's Rule is much more accurate than Trapezoid so the difference between the two is a good estimate of the error in Trapezoid.
- If the error estimate on either half is greater than tol/2, then recursively subdivide that interval in half.

Recursive subroutine example

Compute m ! recursively,
Using $m!=m(m-1)(m-2) \cdots 3 \cdot 2 \cdot 1=m(m-1)$!

```
recursive subroutine myfactorial(m,mfact)
implicit none
integer, intent(in) :: m
integer, intent(out) :: mfact
integer :: m1fact
if (m <= 1) then
    mfact = 1
else
    call myfactorial(m-1, m1fact)
    mfact = m * m1fact
endif
end subroutine myfactorial
```

\$UWHPSC/adaptive_quadtrature/factorial_example.f90

Adaptive quadrature

Ideas:

- $\int_{a}^{b} f(x) d x=\int_{a}^{(a+b) / 2} f(x) d x+\int_{(a+b) / 2}^{b} f(x) d x$.
- If we split the interval in half and the error on each half is less than tol/2 then the total error is less than tol.
- Simpson's Rule is much more accurate than Trapezoid so the difference between the two is a good estimate of the error in Trapezoid.
- If the error estimate on either half is greater than tol/2, then recursively subdivide that interval in half.

Adaptive Quadrature

See codes in \$UWHPSC/codes/adaptive_quadrature
../serial: Serial code with recursive subroutine
. . / openmp1: OpenMP splitting into two pieces
. . /openmp2: OpenMP with nested forks

Adaptive quadrature - recursion

Selected lines from

\$UWHPSC/codes/adaptive_quadrature/serial/adapquad_mod.f9

```
recursive subroutine adapquad(f,a,b,tol,intest,errest,level,fa,fb)
    implicit none
    real(kind=8), intent(in) :: a,b,tol
    real(kind=8), intent(out) :: intest
    real(kind=8), optional, intent(out) :: errest
    integer, optional, intent(in) :: level
    real(kind=8), optional, intent(in) :: fa,fb
    real(kind=8), external :: f
    ! Local variables:
    real(kind=8) :: xmid, fmid, trapezoid, simpson, errest1, errest2, &
        intest1, intest2, tol2, f_a, f_b
    integer :: thislevel, nextlevel
```


Adaptive quadrature - recursion

Using optional subroutine parameters in Fortran 90:

```
38
39
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
```

```
if (.not. present(level)) then
```

if (.not. present(level)) then
! called from main program, which is level=1:
! called from main program, which is level=1:
thislevel = 1
thislevel = 1
else
else
thislevel = level
thislevel = level
endif
endif
write(8,801) a,b,thislevel
write(8,801) a,b,thislevel
if (present(fa)) then
if (present(fa)) then
f_a = fa
f_a = fa
else
else
f_a = f(a)
f_a = f(a)
endif

```
endif
```


Adaptive quadrature - recursion

Main recursion step:

78

```
if ((errest > tol) .and. (thislevel < maxlevel)) then
    ! recursively apply this subroutine to each half, with
    ! tolerance tol/2 for each, and nextlevel = thislevel+1:
    tol2 = tol / 2.d0
    nextlevel = thislevel + 1
    call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f_a,fmid)
    call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f_b)
    intest = intest1 + intest2
    errest = errest1 + errest2
else
    ! Use the trapezoid approximation.
    ! Note that simpson would be better,
    ! but we have error estimate for trapezoid
    intest = trapezoid
    endif
```


Adaptive quadrature with tol $=0.5$

$$
\begin{aligned}
& \text { approx }=0.1982448782099 \mathrm{E}+00 \\
& \text { true }=0.4147421694070 \mathrm{E}+00 \\
& \text { error }=-0.216 \mathrm{E}+00 \\
& \text { errest }=-0.415 \mathrm{E}-01
\end{aligned}
$$

Adaptive quadrature with tol $=0.1$


```
approx \(=0.4074167985367 \mathrm{E}+00\)
true \(=0.4147421694070 \mathrm{E}+00\)
error \(=-0.733 \mathrm{E}-02\)
errest \(=-0.730 \mathrm{E}-02\)
\(g\) was evaluated
53 times
```


Adaptive quadrature with tol $=0.02$


```
approx \(=0.4144742980922 \mathrm{E}+00\)
true \(=0.4147421694070 \mathrm{E}+00\)
error \(=-0.268 \mathrm{E}-03\)
errest \(=0.119 \mathrm{E}-01\)
g was evaluated 115 times
```


Adaptive quadrature - OpenMP

First attempt: split up original interval into 2 pieces in main program...
! \$UWHPSC/codes/adaptive_quadrature/openmp1/testquad.f90

```
xmid = 0.5d0* (a+b)
tol2 = tol / 2.d0
    !$omp parallel sections
    !$omp section
    call adapquad(g,a,xmid,tol2,intest1,errest1)
    !$omp section
    call adapquad(g,xmid,b,tol2,intest2,errest2)
    !$omp end parallel sections
int_approx = intest1 + intest2
errest = errest1 + errest2
```

May exhibit poor load balancing if much more work has to be done in one half than the other.

Adaptive quadrature with tol $=0.1$

Two threads, with OpenMP applied at top level only.

Thread 0 works only on left half, Thread 1 works only on right half

Blue: Thread 0
Red: Thread 1

Adaptive quadrature with tol $=0.01$

Two threads, with OpenMP applied at top level only.

Note that Thread 1 is done before Thread 0

Blue: Thread 0 Red: Thread 1

Poor load balancing if function is much smoother on one half of interval than the other!

Adaptive quadrature - OpenMP

Better approach: Allow nested calls to OpenMP.

! \$UWHPSC/codes/adaptive_quadrature/openmp2/testquad.f90
! Allow nested OpenMP threading:

```
!$ call omp_set_nested(.true.)
```

```
call adapquad(g, a, b, tol, int_approx, errest)
```

$!===========$
! \$UWHPSC/codes/adaptive_quadrature/openmp2/adapquad_mod.f90

```
if ((errest > tol) .and. (thislevel < maxlevel)) then
    ! recursively apply this subroutine to each half, with
    ! tolerance tol/2 for each, and nextlevel = thislevel+1:
    tol2 = tol / 2.d0
    nextlevel = thislevel + 1
    !$omp parallel sections
    !$omp section
            call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f_a,fmid
    !$omp section
            call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f_b
    !$omp end parallel sections
```


Adaptive quadrature with tol $=0.1$

Two threads, with nested OpenMP calls

Next available thread takes each interval to be handled.

Adaptive quadrature with tol $=0.1$

Running same thing a second time gives different pattern:

Next available thread takes each interval to be handled.

Subintervals used for each Trapezoid rule

Blue: Thread 0
Red: Thread 1

Adaptive quadrature with tol $=0.01$

Two threads, with nested OpenMP calls

Next available thread takes each interval to be handled.

Blue: Thread 0
Red: Thread 1

Software for adaptive quadrature

Much more sophisticated quadrature routines are available...
QUADPACK: Fortran 77
http://en.wikipedia.org/wiki/QUADPACK
SciPy: scipy.integrate. quad uses QUADPACK:
In [1]: from scipy import integrate as I
In [2]: beta $=10$.
In [3]: f $=$ lambda $x: \exp (-$ beta**2 $* x * * 2)+\sin (x)$
In [4]: I.quad(f, -2., 4.)
Out [4]: (0.4147421694070216, 8.440197311887498e-09)
Returns estimate of integral and of error.
Use I. quad? or I? to learn more.

