
AMath 483/583 — Lecture 17

Outline:
• Fine grain vs. coarse grain parallelism
• Manually splitting loops between threads
• Examples with bugs

Reading:

• class notes: OpenMP section of Bibliography

• $UWHPSC/codes/openmp

• https://computing.llnl.gov/tutorials/openMP/

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

http://faculty.washington.edu/rjl/classes/am583s2013/notes/biblio.html#biblio-openmp
https://computing.llnl.gov/tutorials/openMP/

Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting
work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each
thread deal with one piece.

May need to synchronize or share information at some points.

More similar to what must be done in MPI.

Domain Decomposition: Splitting up a problem on a large
domain (e.g. three-dimensional grid) into pieces that are
handled separated (with suitable coupling).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting
work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each
thread deal with one piece.

May need to synchronize or share information at some points.

More similar to what must be done in MPI.

Domain Decomposition: Splitting up a problem on a large
domain (e.g. three-dimensional grid) into pieces that are
handled separated (with suitable coupling).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting
work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each
thread deal with one piece.

May need to synchronize or share information at some points.

More similar to what must be done in MPI.

Domain Decomposition: Splitting up a problem on a large
domain (e.g. three-dimensional grid) into pieces that are
handled separated (with suitable coupling).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Solution of independent ODEs by Euler’s method

Solve u′i(t) = ciui(t) for t ≥ 0
with initial condition ui(0) = ηi. Decoupled system of ODEs

for i = 1, 2, . . . , n

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for large n.

For each i time stepping can’t be easily made parallel.

But for large n, this problem is embarassingly parallel:

Problem for each i is completely decoupled from problem for
any other i. Could solve them all simultaneously with no
communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Solution of independent ODEs by Euler’s method

Solve u′i(t) = ciui(t) for t ≥ 0
with initial condition ui(0) = ηi. Decoupled system of ODEs

for i = 1, 2, . . . , n

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for large n.

For each i time stepping can’t be easily made parallel.

But for large n, this problem is embarassingly parallel:

Problem for each i is completely decoupled from problem for
any other i. Could solve them all simultaneously with no
communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Solution of independent ODEs by Euler’s method

Solve u′i(t) = ciui(t) for t ≥ 0
with initial condition ui(0) = ηi. Decoupled system of ODEs

for i = 1, 2, . . . , n

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for large n.

For each i time stepping can’t be easily made parallel.

But for large n, this problem is embarassingly parallel:

Problem for each i is completely decoupled from problem for
any other i. Could solve them all simultaneously with no
communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Solution of independent ODEs by Euler’s method

Solve u′i(t) = ciui(t) for t ≥ 0
with initial condition ui(0) = ηi. Decoupled system of ODEs

for i = 1, 2, . . . , n

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for large n.

For each i time stepping can’t be easily made parallel.

But for large n, this problem is embarassingly parallel:

Problem for each i is completely decoupled from problem for
any other i. Could solve them all simultaneously with no
communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Fine grain solution with parallel do loops

!$omp parallel do
do i=1,n

u(i) = eta(i)
enddo

do m=1,nsteps
!$omp parallel do
do i=1,n

u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo

Note that threads are forked nsteps+1 times.

Requires shared memory:
don’t know which thread will handle each i.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Fine grain solution with parallel do loops

Might try to fork threads only once via: Wrong!

!$omp parallel private(m)
!$omp do
do i=1,n

u(i) = eta(i)
enddo

do m=1,nsteps
!$omp do
do i=1,n

u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo
!$omp end parallel

Error: the loop on m will be done independently by each thread.
(Actually works in this case but not good coding.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Fine grain solution with parallel do loops

Might try to fork threads only once via: Wrong!

!$omp parallel private(m)
!$omp do
do i=1,n

u(i) = eta(i)
enddo

do m=1,nsteps
!$omp do
do i=1,n

u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo
!$omp end parallel

Error: the loop on m will be done independently by each thread.
(Actually works in this case but not good coding.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Fine grain solution with parallel do loops

Can rearrange loops:

!$omp parallel private(m)
!$omp do
do i=1,n

u(i) = eta(i)
enddo

!$omp do
do i=1,n

do m=1,nsteps
u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo
!$omp end parallel

Only works because ODEs are decoupled — can take all time
steps on u1(t) without interacting with u2(t), for example.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Fine grain solution with parallel do loops

Can rearrange loops:

!$omp parallel private(m)
!$omp do
do i=1,n

u(i) = eta(i)
enddo

!$omp do
do i=1,n

do m=1,nsteps
u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo
!$omp end parallel

Only works because ODEs are decoupled — can take all time
steps on u1(t) without interacting with u2(t), for example.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Coarse grain solution of ODEs

Split up i = 1, 2, . . . , n into nthreads disjoint sets.
A set goes from i=istart to i=iend
These private values are different for each thread.

Each thread handles 1 set for the entire problem.

!$omp parallel private(istart,iend,i,m)

istart = ??
iend = ??

do i=istart,iend
u(i) = eta(i)
enddo

do m=1,nsteps
do i=istart,iend

u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo
!$omp end parallel

Threads are forked only once,
Each thread only needs subset of data.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Setting istart and iend

Example: If n=100 and nthreads = 2, we would want:

Thread 0: istart= 1 and iend= 50,
Thread 1: istart=51 and iend=100.

If nthreads divides n evenly...

points_per_thread = n / nthreads

!$omp parallel private(thread_num, istart, iend, i)

thread_num = 0 ! needed in serial mode
!$ thread_num = omp_get_thread_num()

istart = thread_num * points_per_thread + 1
iend = (thread_num+1) * points_per_thread

do i=istart,iend
! work on thread’s part of array
enddo

...

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Setting istart and iend more generally

Example: If n=101 and nthreads = 2, we would want:

Thread 0: istart= 1 and iend= 51,
Thread 1: istart=52 and iend=101.

If nthreads might not divide n evenly...

points_per_thread = (n + nthreads - 1) / nthreads

!$omp parallel private(thread_num, istart, iend, i)

thread_num = 0 ! needed in serial mode
!$ thread_num = omp_get_thread_num()

istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)

do i=istart,iend
! work on thread’s part of array
enddo

...

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Example: Normalizing a vector

Given a vector (1-dimensional array) x,
Compute the normalized vector x/‖x‖1, with ‖x‖1 =

∑n
i=1 |xi|

Fine-grain: Using parallel do loops.

norm = 0.d0
!$omp parallel do reduction(+ : norm)
do i=1,n

norm = norm + abs(x(i))
enddo

!$omp parallel do
do i=1,n

x(i) = x(i) / norm
enddo

Note: Must finish computing norm before using for any x(i),
so we are using the implicit barrier after the first loop.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Example: Normalizing a vector

Another fine-grain approach, forking threads only once:

! from $UWHPSC/codes/openmp/normalize1.f90
norm = 0.d0
!$omp parallel private(i)

!$omp do reduction(+ : norm)
do i=1,n

norm = norm + abs(x(i))
enddo

!$omp barrier ! not needed (implicit)

!$omp do
do i=1,n

x(i) = x(i) / norm
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Example: Normalizing a vector

Compute the normalized vector x/‖x‖1, with ‖x‖1 =
∑n

i=1 |xi|

Coarse grain version:

Assign blocks of i values to each thread. Threads must:

• Compute thread’s contribution to ‖x‖1,

norm_thread =

iend∑
istart

|xi|,

• Collaborate to compute total value ‖x‖1:

‖x‖1 =
∑

threads

norm_thread

• Loop over i = istart, iend to divide xi by ‖x‖1.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Example: Normalizing a vector

! from $UWHPSC/codes/openmp/normalize2.f90

norm = 0.d0
!$omp parallel private(i,norm_thread, &
!$omp istart,iend,thread_num)
!$ thread_num = omp_get_thread_num()
istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)

norm_thread = 0.d0
do i=istart,iend

norm_thread = norm_thread + abs(x(i))
enddo

! update global norm with value from each thread:
!$omp critical
norm = norm + norm_thread

!$omp end critical

!$omp barrier !! needed here

do i=istart,iend
y(i) = x(i) / norm
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Example: Normalizing a vector — parallel block

norm_thread = 0.d0
do i=istart,iend

norm_thread = norm_thread + abs(x(i))
enddo

! update global norm with value from each thread:
!$omp critical

norm = norm + norm_thread
!$omp end critical

!$omp barrier !! needed here

do i=istart,iend
y(i) = x(i) / norm
enddo

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

Solve u′i(t) = ciui(t) for t ≥ 0
with initial condition ui(0) = ηi.

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

New wrinkle: Stop time stepping when any of the ui(t) values
exceeds 100.

(Will certainly happen as long as cj > 0 for some j.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

Study code in $UWHPSC/codes/openmp/umax1.f90.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

Study code in $UWHPSC/codes/openmp/umax1.f90.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

Study code in $UWHPSC/codes/openmp/umax1.f90.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

Study code in $UWHPSC/codes/openmp/umax1.f90.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

Study code in $UWHPSC/codes/openmp/umax1.f90.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

!$omp parallel private(i,m,umax_thread, &
!$omp istart,iend,thread_num)
!$ thread_num = omp_get_thread_num()
istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)

do m=1,nsteps
umax_thread = 0.d0
!$omp single

umax = 0.d0
!$omp end single
do i=istart,iend

u(i) = (1.d0 + c(i)*dt) * u(i)
umax_thread = max(umax_thread, u(i))
enddo

!$omp critical
umax = max(umax, umax_thread)

!$omp end critical
!$omp barrier

if (umax > 100) exit
!$omp barrier
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

do loop in parallel block:

do m=1,nsteps
umax_thread = 0.d0
!$omp single
umax = 0.d0

!$omp end single
do i=istart,iend

u(i) = (1.d0 + c(i)*dt) * u(i)
umax_thread = max(umax_thread, u(i))
enddo

!$omp critical
umax = max(umax, umax_thread)

!$omp end critical
!$omp barrier
if (umax > 100) exit
!$omp barrier
enddo

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

If there were no barriers, the following could happen:
Thread 0 executes critical section first, setting umax to 0.5.
Thread 0 checks if umax > 100. False, starts next iteration.
Thread 1 executes critical section, updating umax to 110.
Thread 1 checks if umax > 100. True, so it exits.
Thread 0 next sets umax to 0.4.

Thread 0 might never reach umax > 100. Runs forever.

With only first barrier, the following could happen:
umax < 100 in iteration m.
Thread 1 checks if umax > 100. Go to iteration m+ 1.
Thread 1 does iteration on i and sets umax > 100,

Stops at first barrier.
Thread 0 (iteration m) checks if umax > 100. True, Exits.

Thread 0 never reaches first barrier again, code hangs.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

OpenMP example with shared exit criterion

If there were no barriers, the following could happen:
Thread 0 executes critical section first, setting umax to 0.5.
Thread 0 checks if umax > 100. False, starts next iteration.
Thread 1 executes critical section, updating umax to 110.
Thread 1 checks if umax > 100. True, so it exits.
Thread 0 next sets umax to 0.4.

Thread 0 might never reach umax > 100. Runs forever.

With only first barrier, the following could happen:
umax < 100 in iteration m.
Thread 1 checks if umax > 100. Go to iteration m+ 1.
Thread 1 does iteration on i and sets umax > 100,

Stops at first barrier.
Thread 0 (iteration m) checks if umax > 100. True, Exits.

Thread 0 never reaches first barrier again, code hangs.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 17

