
AMath 483/583 — Lecture 16

Outline:
• OpenMP:
• loop dependencies
• threadsafe and pure subroutines and functions
• other directives, beyond "parallel do"

Reading:

• class notes: OpenMP section of Bibliography

• $UWHPSC/codes/openmp

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

http://faculty.washington.edu/rjl/classes/am583s2013/notes/biblio.html#biblio-openmp

Guest lecture on Monday May 13

Fernando Perez from Berkeley will talk about

IPython for parallel computing

eScience Seminar on IPython more generally,

IPython: tools for the lifecycle of computational ideas

At 4:00pm on May 13 in EE 303.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

http://escience.washington.edu/event/escience-seminar-fernando-perez-uw-ipython-tools-lifecycle-computational-ideas

AMath 483/583 — Lecture 16

Outline:
• OpenMP:
• loop dependencies
• threadsafe and pure subroutines and functions
• other directives, beyond "parallel do"

Reading:

• class notes: OpenMP section of Bibliography

• $UWHPSC/codes/openmp

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

http://faculty.washington.edu/rjl/classes/am583s2013/notes/biblio.html#biblio-openmp

Dependencies in loops

do i=1,n
z(i) = x(i) + y(i)
w(i) = cos(z(i))
enddo

There is a data dependence between the two statements in this
loop.

The value w(i) cannot be computed before z(i).

However, this can be paralellized with a parallel do since the
same thread will always execute both statements in the right
order for each i.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Matrix-matrix multiplication

!$omp parallel do private(i,k)
do j=1,n

do i=1,n
c(i,j) = 0.d0
do k=1,n

c(i,j) = c(i,j) + a(i,k)*b(k,j)
enddo

enddo
enddo

This works since c(i,j) is only modified by thread handling
column j.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Loop-Carried Dependencies

x = 1.d0 ! initialize all elements to 1
x(1) = 5.d0

do i=2,n
x(i) = x(i-1)
enddo

There is a loop-carried data dependence in this loop.

The assignment for i=3 must not be done before i=2 or it may
get the wrong value.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Loop-Carried Dependencies

Example: Solve ODE initial value problem

y′(t) = 2y(t),

y(0) = 1

with Euler’s method

y(t + ∆t) ≈ y(t) + ∆t y′(t) = y(t) + ∆t(2y(t)),

to approximate y(t) = e2t for 0 ≤ t ≤ 5:

y(1) = 1.d0
dt = 0.001d0 ! time step
n = 5000 ! number of steps to reach t=5
do i=2,n

y(i) = y(i-1) + dt*2.d0*y(i-1)
enddo

Cannot easily parallelize.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Loop-Carried Dependencies

y = 0.d0
do i=1,10

if (i==3) y = 1.d0
x(i) = y
enddo

There is a loop-carried data dependence in this loop.

In serial execution: only first two elements of x are 0.d0.

With !$omp parallel do:

later index (e.g. i=6) might be executed before i=3.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Thread-safe functions

Consider this code:

!$omp parallel do
do i=1,n

y(i) = myfcn(x(i))
enddo

Does this give the same results as the serial version?

Maybe not... it depends on what the function does!

If this gives the same results regards of the order threads call
for different values of i, then the function is thread safe.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Thread-safe functions

Consider this code:

!$omp parallel do
do i=1,n

y(i) = myfcn(x(i))
enddo

Does this give the same results as the serial version?

Maybe not... it depends on what the function does!

If this gives the same results regards of the order threads call
for different values of i, then the function is thread safe.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Thread-safe functions

A thread-safe function:

function myfcn(x)
real(kind=8), intent(in) :: x
real(kind=8), intent(out) :: myfcn
real(kind=8) :: z ! local variable
z = exp(x)
myfcn = z*cos(x)

end function myfcn

Executing this function for one value of x is completely
independent of execution for other values of x.

Note that each call creates a new local value z on the call
stack, so z is private to the thread executing the function.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Non-Thread-safe functions

Suppose z, count are global variables defined in module
globals.f90.

Then this function is not thread-safe:

function myfcn(x)
real(kind=8), intent(in) :: x
real(kind=8), intent(out) :: myfcn
use globals
count = count+1 ! counts times called
z = exp(x)
myfcn = z*cos(x) + count

end function myfcn

The value of count seen when calling y(i) = myfcn(x(i))
will depend on the order of execution of different values of i.

Moreover,z might be modified by another thread between when
it is computed and when it is used.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Aside on global variables in Fortran

module globals
implicit none
save
integer :: count
real(kind=8) :: z

end module globals

The save command says that values of these variables should
be saved from one use to the next.

Fortran 77 and before: Instead used common blocks:

common /globals/ z,count

can be included in any file where z and count should be
available. (Also not thread safe!)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Non-Thread-safe functions

Beware of input or output...

Suppose unit 20 has been opened for reading in the main
program, value on line i should be used in calculating y(i)...

This function is not thread-safe:

function myfcn(x)
real(kind=8), intent(in) :: x
real(kind=8), intent(out) :: myfcn
real(kind=8) :: z

read(20,*) z
myfcn = z*cos(x)

end function myfcn

Will work in serial mode but if threads execute in different order,
will give wrong results.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Pure subroutines and functions

A subroutine can be declared pure if it:
• Does not alter global variables,
• Does not do I/O,
• Does not declare local variables with the save attribute,

such as real, save :: z
• For functions, does not alter any input arguments.

Example:

pure subroutine f(x,y)
implicit none
real(kind=8), intent(in) :: x
real(kind=8), intent(inout) :: y
y = x**2 + y

end subroutine f

Good idea even for sequential codes: Allows some compiler
optimizations.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Forall statement in Fortran 90

In place of

do i=1,n
x(i) = 2.d0*i

end do

can write

forall (i=1:n)
x(i) = 2.d0*i

end forall

Tells compiler that the statements can execute in any order.

Also may lead to compiler optimization even on serial computer.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Forall statement in Fortran 90

Nested loops can be written with forall:

forall (i=1:n, j=1:n)
a(i,j) = 2.d0*i*j

end forall

Tells compiler that it could reorder loops at will to optimize
cache usage, for example.

Can also include masks:

forall (i=1:n, j=1:n, b(i,j).ne.0.d0)
a(i,j) = 1.d0 / b(i,j)

end forall

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

OpenMP — beyond parallel loops

The directive !$omp parallel is used to create a number of
threads that will each execute the same code...

!$omp parallel
! some code

!$omp end parallel

The code will be executed nthreads times, once by each
thread.

SPMD: Single program, multiple data

Terminology note:

SIMD: Single instruction, multiple data

refers to hardware (vector machines) that apply same
arithmetic operation to a vector of values in lock-step.
SPMD is a software term — need not be in lock step.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

OpenMP — beyond parallel loops

The directive !$omp parallel is used to create a number of
threads that will each execute the same code...

!$omp parallel
! some code

!$omp end parallel

The code will be executed nthreads times, once by each
thread.

SPMD: Single program, multiple data

Terminology note:

SIMD: Single instruction, multiple data

refers to hardware (vector machines) that apply same
arithmetic operation to a vector of values in lock-step.
SPMD is a software term — need not be in lock step.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

OpenMP parallel with do loops

Note: This code...

!$omp parallel
do i=1,10

print *, "i = ",i
enddo

!$omp end parallel

The entire do loop (i=1,2,...,10) will be executed by each thread!
With 2 threads, 20 lines will be printed.

... is not the same as:

!$omp parallel do
do i=1,10

print *, "i = ",i
enddo

!$omp end parallel do

which will only print 10 lines!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

OpenMP parallel with do loops

Note: This code...

!$omp parallel
do i=1,10

print *, "i = ",i
enddo

!$omp end parallel

The entire do loop (i=1,2,...,10) will be executed by each thread!
With 2 threads, 20 lines will be printed.

... is not the same as:

!$omp parallel do
do i=1,10

print *, "i = ",i
enddo

!$omp end parallel do

which will only print 10 lines!
R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

OpenMP parallel with do loops

!$omp parallel do
do i=1,10

print *, "i = ",i
enddo

!$omp end parallel do

could also be written as:

!$omp parallel
!$omp do

do i=1,10
print *, "i = ",i
enddo

!$omp end do
!$omp end parallel

More generally, if !$omp do is inside a parallel block, then the
loop is split between threads rather than done in total by each
thread. R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

OpenMP parallel with do loops

The !$omp do directive is useful for...

!$omp parallel

! some code executed by every thread

!$omp do
do i=1,n

! loop to be split between threads
enddo

!$omp end do

! more code executed by every thread

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Some other useful directives...

Execution of part of code by a single thread:

!$omp parallel
! some code executed by every thread

!$omp single
! code executed by only one thread

!$omp end single

!$omp end parallel

Can also use !$omp master to force execution by master
thread.

Example: Initializing or printing out a shared variable.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Some other useful directives...

barriers:

!$omp parallel
! some code executed by every thread

!$omp barrier

! some code executed by every thread
!$omp end parallel

Every thread will stop at barrier until all threads have reached
this point.

Make sure all threads reach barrier or code will hang!

Implied barriers after some blocks, e.g. !$omp do
or !$omp single.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Some other useful directives...

barriers:

!$omp parallel
! some code executed by every thread

!$omp barrier

! some code executed by every thread
!$omp end parallel

Every thread will stop at barrier until all threads have reached
this point.

Make sure all threads reach barrier or code will hang!

Implied barriers after some blocks, e.g. !$omp do
or !$omp single.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

Some other useful directives...

Sections:

!$omp parallel num_threads 2

!$omp sections

!$omp section
! code executed by only one thread

!$omp section
! code executed by a different thread

!$omp end sections !! with implied barrier !!

!$omp end parallel

Example: Read in two large data files simultaneously.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

From $UWHPSC/codes/openmp/demo2.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16

	Lecture 16
	OpenMP

