
AMath 483/583 — Lecture 15

Outline:
• Cloud computing on Amazon Web Services
• Timing Fortran codes

Reading:

• class notes: AWS section
• class notes: Timing code section

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Cloud Computing

• Computing resources as a “utility”.

• Rent computer time by the hour as needed.

• Avoid buying computers that will sit idle most of the time.

• Provide a computing platform with necessary software
pre-installed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Amazon Web Services (AWS)

• Elastic Cloud Computing (ECC)

• Scalable Storage (S3)

• Many other services: aws.amazon.com

Several instance types are available.

• Free usage tier: Can run one “micro-instance” free for a
year. (1 EC2 compute unit, 613 MiB memory)

• C1, High CPU medium instance: 2 cores with 5 EC2 units,
1.7 GiB memory.

• See the Price list

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Amazon Machine Images (AMIs)

Choice of virtual machines to use when launching an instance.

See the List of basic AMIs

For this class, and AMI is available with much of the software
needed.

https://console.aws.amazon.com/ec2/home?region=
us-west-2#launchAmi=ami-b47feb84

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

AWS demo

See the instructions in the class notes: AWS section

Note:
• You will need to create an account

• and create a key-pair

• and a security group

• On a Mac, for X-window forwarding you need to
install Xcode

• On Windows, you need an ssh client such as putty
For X-window forwarding you also need xming

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

AMath 483/583 — Lecture 15

Outline:

• Timing Fortran codes

Reading:

• class notes: Timing code section

• $UWHPSC/codes/fortran/timings.f90

• $UWHPSC/codes/openmp/timings.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Determining CPU and execution time

Unix time command, e.g.

$ time ./a.out
<output from code>

real 0m5.279s
user 0m1.915s
sys 0m0.006s

Means the elapsed (wall clock) time was 5.279 seconds,

CPU time dedicated to your code was ≈ 1.915 seconds.

System time ≈ 0.006 seconds.

Doesn’t allow examining parts of code, not always very
accurate.

Note that timing small codes can be deceptive
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Fortran timing utilities

system_clock: elapsed time between 2 calls.

cpu_time: CPU time used between 2 calls.

See class notes: Timing code

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15

