
AMath 483/583 — Lecture 12

Outline:
• More about computer arithmetic

• Fortran optimization and compiler flags

• Parallel computing

Reading:

• Optimization flags: http://gcc.gnu.org/onlinedocs/
gcc-3.4.5/gcc/Optimize-Options.html

class notes: bibliography for general books on parallel
programming

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

http://gcc.gnu.org/onlinedocs/gcc-3.4.5/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc-3.4.5/gcc/Optimize-Options.html
http://faculty.washington.edu/rjl/classes/am583s2013/notes/bibliography.html

Excess precision

In Homework 3 some people noticed different small values
reported when evaluating f(x) for x very close to root.

Try compiling with gfortran flag -ffloat-store.

This forces variables to be written out of registers to cache
before reusing.

Sometimes registers have more precision than other memory
to try to get a bit better accuracy.

Sometimes nice, but can destroy reproducibility.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Excess precision

In Homework 3 some people noticed different small values
reported when evaluating f(x) for x very close to root.

Try compiling with gfortran flag -ffloat-store.

This forces variables to be written out of registers to cache
before reusing.

Sometimes registers have more precision than other memory
to try to get a bit better accuracy.

Sometimes nice, but can destroy reproducibility.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Floating point real numbers

Base 10 scientific notation:

0.2345e-18 = 0.2345× 10−18 = 0.0000000000000000002345

Mantissa: 0.2345, Exponent: -18

Binary floating point numbers:

Example: Mantissa: 0.101101, Exponent: -11011 means:

0.101101 = 1(2−1) + 0(2−2) + 1(2−3) + 1(2−4) + 0(2−5) + 1(2−6)

= 0.703125 (base 10)
−11011 = −1(24) + 1(23) + 0(22) + 1(21) + 1(20) = −27 (base 10)

So the number is

0.703125× 2−27 ≈ 5.2386894822120667× 10−9

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Floating point real numbers

Base 10 scientific notation:

0.2345e-18 = 0.2345× 10−18 = 0.0000000000000000002345

Mantissa: 0.2345, Exponent: -18

Binary floating point numbers:

Example: Mantissa: 0.101101, Exponent: -11011 means:

0.101101 = 1(2−1) + 0(2−2) + 1(2−3) + 1(2−4) + 0(2−5) + 1(2−6)

= 0.703125 (base 10)
−11011 = −1(24) + 1(23) + 0(22) + 1(21) + 1(20) = −27 (base 10)

So the number is

0.703125× 2−27 ≈ 5.2386894822120667× 10−9

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Floating point real numbers

Fortran:

real (kind=4): 4 bytes
This used to be standard single precision real

real (kind=8): 8 bytes
This used to be called double precision real

Python float datatype is 8 bytes.

8 bytes = 64 bits,

53 bits for mantissa and 11 bits for exponent (64 bits = 8 bytes).

We can store 52 binary bits of precision.

2−52 ≈ 2.2× 10−16 =⇒ roughly 15 digits of precision.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Floating point real numbers (8 bytes)

Since 2−52 ≈ 2.2× 10−16

this corresponds to roughly 15 digits of precision.

We can hope to get at most 15 correct digits in computations.

For example:

>>> from numpy import pi
>>> pi
3.1415926535897931

>>> 1000 * pi
3141.5926535897929

Note: storage and arithmetic is done in base 2
Converted to base 10 only when printed!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Absolute and relative error

Let ẑ = exact answer to some problem,
z∗ = computed answer using some algorithm.

Absolute error: |z∗ − ẑ|

Relative error:
|z∗ − ẑ|
|ẑ|

If |ẑ| ≈ 1 these are roughly the same.

But in general relative error is a better measure of
how many correct digits in the answer:

Relative error ≈ 10−k =⇒ ≈ k correct digits.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Precision of floating point

If x a real number then f`(x) represents the closest floating
point number.

Unless overflow or underflow occurs, this generally has relative
error

∣∣∣∣f`(x)− xx

∣∣∣∣ ≤ εm
where εm is Machine epsilon.

εm ≈ 10−k =⇒ about k correct digits.

8-byte double precision: εm ≈ 2.22× 10−16.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Machine epsilon (for 8 byte reals)

>>> y = 1. + 3.e-16
>>> y
1.0000000000000002

>>> y - 1.
2.2204460492503131e-16

Machine epsilon is the distance between 1.0 and the next
largest number that can be represented: 2−52 ≈ 2.2204× 10−16

>>> y = 1 + 1e-16
>>> y
1.0

>>> y == 1
True

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Catastrophic cancellation of nearly equal numbers

We generally don’t need 16 digits in our solutions
But often need that many digits to get reliable results.

>>> from numpy import pi
>>> pi
3.1415926535897931

>>> y = pi * 1.e-10
>>> y
3.1415926535897934e-10

>>> z = 1. + y
>>> z
1.0000000003141594 # 15 digits correct in z

>>> z - 1.
3.141593651889707e-10 # only 6 or 7 digits right!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Sample compiler optimizations

See: http://gcc.gnu.org/onlinedocs/gcc-3.4.5/gcc/
Optimize-Options.html

for a list of many gcc optimization flags.

Often -O2 or -O3 flag is used to include many common
optimizations.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

http://gcc.gnu.org/onlinedocs/gcc-3.4.5/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc-3.4.5/gcc/Optimize-Options.html

Global common subexpresion elimination

-fgcse (or -O2, -O3) optimization flag will replace:

do i=1,n
y(i) = 2.d0 * x(i) * pi
enddo

by machine code equivalent of...

pi2 = 2.d0 * pi
do i=1,n

y(i) = pi2 * x(i)
enddo

Note: May give slightly different results because computer
arithmetic is non-commutative!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Global common subexpresion elimination

-fgcse (or -O2, -O3) optimization flag will replace:

do i=1,n
y(i) = 2.d0 * x(i) * pi
enddo

by machine code equivalent of...

pi2 = 2.d0 * pi
do i=1,n

y(i) = pi2 * x(i)
enddo

Note: May give slightly different results because computer
arithmetic is non-commutative!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Sample compiler optimization – inlining functions

-finline-functions (or -O3) optimization flag will replace function
calls by the corresponding code inline:

E.g., in $UWHPSC/codes/fortran/newton/newton.f90,
replace

! evaluate function and its derivative:
fx = f(x)
fxprime = fp(x)

by machine code equivalent of...

fx = x**2 - 4.d0
fxprime = 2.d0*x

Overhead of function call is avoided. Can make a big difference
if f(x) is evaluated in a loop over large array.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Sample compiler optimization – inlining functions

-finline-functions (or -O3) optimization flag will replace function
calls by the corresponding code inline:

E.g., in $UWHPSC/codes/fortran/newton/newton.f90,
replace

! evaluate function and its derivative:
fx = f(x)
fxprime = fp(x)

by machine code equivalent of...

fx = x**2 - 4.d0
fxprime = 2.d0*x

Overhead of function call is avoided. Can make a big difference
if f(x) is evaluated in a loop over large array.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Manual code optimization

Often it is necessary to rethink the algorithm in order to
optimize code.

“Premature optimization is the root of all evil” (Don Knuth)

Once code is working, determine which parts of code need to
be improved and spend effort on these sections.

Use tools such as gprof to identify bottlenecks.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

http://sourceware.org/binutils/docs/gprof/index.html

Block matrix multiply

Compute C = AB. Can partition into blocks:[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
where

Cij = Ai1B1j +Ai2B2j

When blocks A11 and B11 are in cache can compute the A11B11

part of C11 = A11B11 +A12B21

Might next bring in B12 and compute the A11B12 part of
C12 = A11B12 +A12B22

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Block matrix multiply

Compute C = AB. Can partition into blocks:[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
where

Cij = Ai1B1j +Ai2B2j

When blocks A11 and B11 are in cache can compute the A11B11

part of C11 = A11B11 +A12B21

Might next bring in B12 and compute the A11B12 part of
C12 = A11B12 +A12B22

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Matrix transpose

do j=1,n
do i=1,n

b(j,i) = a(i,j)
enddo

enddo

Accessing a by column but b by row.

Switching loop order =⇒ accessing a by row!

Better to do by blocks[
B11 B12

B21 B22

]
=

[
A11 A12

A21 A22

]T
=

[
AT

11 AT
21

AT
12 AT

22

]

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Matrix transpose

Suppose stride s divides n. Then can rewrite as:

Strip mining:

do jj=1,n,s
do j=jj,jj+s-1

do ii=1,n,s
do i=ii,ii+s-1

b(j,i) = a(i,j)

Loop reordering:

do jj=1,n,s
do ii=1,n,s

do j=jj,jj+s-1
do i=ii,ii+s-1

b(j,i) = a(i,j)

Loops over blocks in outer loops, within block in inner loops.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

CPU time vs. throughput

a, b each 1000× 1000 matrices. Compare multiply, add

Compare time of c = matmul(a,b) vs. c = a+b.

Compare megaflops per second: 1e-6*nflops/(t2-t1).

Add: CPU time (sec): 0.00687200
rate: 145.52 megaflop/sec

Multiply: CPU time (sec): 2.38393500 slower
rate: 838.53 megaflop/sec higher

For addition: nflops = n**2 = O(n2)
For multiplication: nflops = (2n-1)*n**2 = O(n3),

More flops, but each element is used n times,
=⇒ More flops per memory access =⇒ higher rate.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

CPU time vs. throughput

a, b each 1000× 1000 matrices. Compare multiply, add

Compare time of c = matmul(a,b) vs. c = a+b.

Compare megaflops per second: 1e-6*nflops/(t2-t1).

Add: CPU time (sec): 0.00687200
rate: 145.52 megaflop/sec

Multiply: CPU time (sec): 2.38393500 slower
rate: 838.53 megaflop/sec higher

For addition: nflops = n**2 = O(n2)
For multiplication: nflops = (2n-1)*n**2 = O(n3),

More flops, but each element is used n times,
=⇒ More flops per memory access =⇒ higher rate.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Parallel Computing

• Basic concepts
• Shared vs. distributed memory
• OpenMP (shared)
• MPI (shared or distributed)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Some general references

See class notes: bibliography

Some general books...

P. S. Pacheco, An Introduction to Parallel Programming,
Elsevier, 2011.

T. Rauber and G. Ruenger, Parallel Programming For Multicore
and Cluster Systems, Springer, 2010.

C. Lin and L. Snyder, Principles of Parallel Programming, 2008.

L. R. Scott, T. Clark, B. Bagheri, Scientific Parallel Computing,
Princeton University Press, 2005.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

http://faculty.washington.edu/rjl/classes/am583s2013/notes/bibliography.html

Increasing speed

Moore’s Law: Processor speed doubles every 18 months.
=⇒ factor of 1024 in 15 years.

Going forward: Number of cores doubles every 18 months.

Top: Total computing
power of top 500 com-
puters

Middle: #1 computer

Bottom: #500 computer

http://www.top500.org

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

http://www.top500.org

Parallel processing

Shared memory:

All processors have access to the same memory.

Multicore chip: separate L1 caches, L2 might be shared.

Distributed memory:

Each processor has it’s own memory and caches.

Transferring data between processors is slow.

E.g., clusters of computers, supercomputers

General purpose GPU computing: (Graphical Processor Unit)

Hybrid: Often clusters of multicore/GPU machines!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Parallel processing

Shared memory:

All processors have access to the same memory.

Multicore chip: separate L1 caches, L2 might be shared.

Distributed memory:

Each processor has it’s own memory and caches.

Transferring data between processors is slow.

E.g., clusters of computers, supercomputers

General purpose GPU computing: (Graphical Processor Unit)

Hybrid: Often clusters of multicore/GPU machines!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Parallel processing

Shared memory:

All processors have access to the same memory.

Multicore chip: separate L1 caches, L2 might be shared.

Distributed memory:

Each processor has it’s own memory and caches.

Transferring data between processors is slow.

E.g., clusters of computers, supercomputers

General purpose GPU computing: (Graphical Processor Unit)

Hybrid: Often clusters of multicore/GPU machines!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Parallel processing

Shared memory:

All processors have access to the same memory.

Multicore chip: separate L1 caches, L2 might be shared.

Distributed memory:

Each processor has it’s own memory and caches.

Transferring data between processors is slow.

E.g., clusters of computers, supercomputers

General purpose GPU computing: (Graphical Processor Unit)

Hybrid: Often clusters of multicore/GPU machines!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Multi-thread computing

For example, multi-threaded program on dual-core computer.

Thread:

A thread of control: program code, program counter, call stack,
small amount of thread-specific data (registers, L1 cache).

Shared memory and file system.

Threads may be spawned and destroyed as computation
proceeds.

Languages like OpenMP.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

POSIX Threads

Portable Operating System Intefrace

Standardized C language threads programming interface

For UNIX systems, this interface has been specified by the
IEEE POSIX 1003.1c standard (1995).

Implementations adhering to this standard are referred to as
POSIX threads, or Pthreads.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Multi-thread computing

Some issues:

Limited to modest number of cores when memory is shared.

Multiple threads have access to same data — convenient and
fast.

Contention: But, need to make sure they don’t conflict (e.g. two
threads should not write to same location at same time).

Dependencies, synchronization: Need to make sure some
operations are done in proper order!

May need cache coherence: If Thread 1 changes x in its
private cache, other threads might need to see changed value.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Multi-process computing

A process is a thread that also has its own private address
space.

Multiple processes are often running on a single computer
(e.g. different independent programs).

For distributed memory parallel computers, a single
computation must be tackled with multiple processes because
of memory layout.

Larger cost in creating and destroying processes.

Greater latency in sharing data.

Processes communicate by passing messages.

Languages like MPI — Message Passing Interface.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Multi-process computing

A process is a thread that also has its own private address
space.

Multiple processes are often running on a single computer
(e.g. different independent programs).

For distributed memory parallel computers, a single
computation must be tackled with multiple processes because
of memory layout.

Larger cost in creating and destroying processes.

Greater latency in sharing data.

Processes communicate by passing messages.

Languages like MPI — Message Passing Interface.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

Multi-process computing with distributed memory

Some issues:

Often more complicated to program.

High cost of data communication between processes.
Want to maximize processing on local data relative to
communication with other processes.

Often need to partition problem domain into subdomains,
(e.g. domain decomposition for PDEs)

Generally requires coarse grain parallelism.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 12

	Lecture 11
	Parallel computing

