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For more information: http://www.olcf.ornl.gov/titan/  

Titan 
• compute nodes: 18,688 
• processors: 16-core AMD/node = 299,008 cores 
• GPUs: 18,688 NVIDIA Tesla K20s 
• memory: 32 + 6 GB/node = 710 TB total 
• peak speed: 20+ petaflops 
• floorspace: 4,352 square feet 

http://www.olcf.ornl.gov/titan/
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For more information: https://bluewaters.ncsa.illinois.edu/  

Blue Waters 
• compute nodes: 25,712 
• processors: 386,816 AMD cores 
• GPUs: 3,072 NVIDIA Kepler GPUs 
• memory: 1.476 PB total 
• peak speed: 11.61 petaflops 

https://bluewaters.ncsa.illinois.edu/
https://bluewaters.ncsa.illinois.edu/


Who is Cray? 

PGAS Languages 

 Chapel and PGAS 

 Chapel Motivation 

 Chapel Features 

 Project Status 
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e.g., OpenMP, Pthreads 
+ support dynamic, fine-grain parallelism 

+ considered simpler, more like traditional programming 
 “if you want to access something, simply name it” 

– no support for expressing locality/affinity; limits scalability 

– bugs can be subtle, difficult to track down (race conditions) 

– tend to require complex memory consistency models 
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e.g., MPI 
+ a more constrained model; can only access local data 

+ runs on most large-scale parallel platforms 
 and for many of them, can achieve near-optimal performance 

+ is relatively easy to implement 

+ can serve as a strong foundation for higher-level models 

+ users have been able to get real work done with it 
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e.g., MPI 
– communication must be used to get copies of remote data 

– tends to reveal too much about how to transfer data, not simply what  

– only supports “cooperating executable”-level parallelism 

– couples data transfer and synchronization 

– has frustrating classes of bugs of its own 
– e.g., mismatches between sends/recvs, buffer overflows, etc. 
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(Or perhaps: partitioned global namespace languages) 
 

 abstract concept: 
 support a shared namespace on distributed memory 

 permit any parallel task to access any lexically visible variable 

 doesn’t matter if it’s local or remote 

 

 

shared name-/address space 
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(Or perhaps: partitioned global namespace languages) 
 

 abstract concept: 
 support a shared namespace on distributed memory 

 permit any parallel task to access any lexically visible variable 

 doesn’t matter if it’s local or remote 

 establish a strong sense of ownership 
 every variable has a well-defined location 

 local variables are cheaper to access than remote ones 

 

private 
space 0 

private 
space 1 

private 
space 2 

private 
space 3 

private 
space 4 

partitioned shared name-/address space 
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PGAS founding members: Co-Array Fortran, UPC, 

Titanium 
 extensions to Fortran, C, and Java, respectively 

 details vary, but potential for: 

 arrays that are decomposed across compute nodes 

 pointers that refer to remote objects 

 note that earlier languages could also be considered PGAS, but 

the term hadn’t been coined yet 
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CAF: The first of our “traditional” PGAS languages 
 developed ~1994 

 adopted into the 2008 Fortran standard 

 

Motivating Philosophy: “What is the smallest change 
required to convert Fortran 95 into a robust parallel language?” 

 originally referred to as F-- to emphasize “smallest change” 

 

 

12 



 SPMD programming/execution model 
 similar to MPI* in this regard 

 program copies are referred to as ‘images’ 
 

 Use intrinsic functions to query the basics: 
integer :: p, me 

p = num_images()  ! returns number of processes 

me = this_image() ! returns value in 1..num_images() 

 

 Barrier sync: 
sync_all()         ! wait for all processes/images 

 

*= typical uses of it, anyway 
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Co-Dimension: an array dimension that refers to the 
space of CAF images (processes) 

 defined using square brackets 
(distinguishes it syntactically from a traditional dimension)  

 

Co-array variables: 
integer i[*]     ! declares an integer, i, per image 

real x[*]        ! declares a float, x, per image 

real a(20)[*]    ! declares a 20-element array per image 

real b(N,N)[*]   ! declares an N x N array per image 
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Co-array variables: 
integer i[*]     ! declares an integer, i, per image 

 

 Of course, traditional variables also result in a copy per 
image (it’s SPMD after all), but private to that image 
integer j       ! declares a private integer, j, per image 
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integer i[*]  

real x[*] 

 

 Refer to other images’ values via co-array indexing: 
 

if (me == 2) then 

  nextX = x[me+1]   ! read neighbor’s value of x 
  i[1] = i          ! copy my value of ‘i’ into image 1’s 
endif 

 

 Co-array indexing/square brackets ⇒ communication 
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 Program in SPMD style 

 Communicate via variables with co-dimensions 
 a copy per program image 

 refer to other images’ copies via square bracket subscripts 

 take advantage of good multidimensional array support 
 multidimensional views of process grid 

 multidimensional views of local data 

 syntactic support for slicing (:) 

 Other stuff too, but this gives you the main idea 

 Adopted into Fortran 2008 standard 
 see also http://www.co-array.org  
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UPC: Our second “traditional” PGAS language 
 developed ~1999 

 “unified” in the sense that it combined 3 distinct parallel C’s: 
 AC, Split-C, Parallel C Preprocessor 

 though a sibling to CAF, philosophically quite different 
 

Motivating Philosophy: 
 extend C concepts logically to support SPMD execution 

 1D arrays 

 for loops 

 pointers (and pointer/array equivalence) 
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 SPMD programming/execution model 
 program copies are referred to as ‘threads’ 

 

 Built-in constants provide the basics: 
int p, me; 

p = THREADS;    // returns number of processes 

me = MYTHREAD;  // returns a value in 0..THREADS-1 

 

 Barrier synch statement: 
upc_barrier;    // wait for all processes/threads 
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 Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 

 uses a cyclic distribution by default 
#define N 10 

shared float a[N], b[N], c[N]; 
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a[0] a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9] 

b[] and c[] distributed similarly 



 Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 

 uses a cyclic distribution by default 
#define N 10 

shared float a[N], b[N], c[N]; 

upc_forall (int i=0; i<N; i++; i) { 

  c[i] = a[i] + alpha * b[i]; 

} 

21 

a[0] 

i i i i i 

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9] 

Affinity field: Which thread 
should execute this iteration? 
(if int, %THREADS to get ID) 



 Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 

 can specify a block-cyclic distribution as well 
#define N 10 

shared [2] float a[N], b[N], c[N]; 

upc_forall (int i=0; i<N; i++; &c[i]) { 

  c[i] = a[i] + alpha * b[i]; 

} 
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a[0] 

i i i i i 

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

Affinity field: Which thread 
should execute this iteration? 
(if ptr-to-shared, owner does) 



 Somewhat confusingly (to me anyway*), shared 
scalars in UPC result in a single copy on thread 0 

int i; 

shared int j; 

 

 

 

 

* = because it seems contrary to SPMD programming 
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 UPC Pointers may be private/shared and may point to 
private/shared 

int* PP;  // private pointer to local data 
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 UPC Pointers may be private/shared and may point to 
private/shared 

int* PP;  // private pointer to local data 

shared int* PS;  // private pointer to shared data 
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 UPC Pointers may be private/shared and may point to 
private/shared 

int* PP;  // private pointer to local data 

shared int* PS;  // private pointer to shared data 

shared int* shared ss;  // shared pointer to shared 

data 
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 Program in SPMD style 

 Communicate via shared arrays/pointers 
 cyclic and block-cyclic arrays 

 pointers to shared and private data 

 array-pointer equivalence 

 Other stuff too, but this gives you the main idea 

 For more information, see https://upc-lang.org/upc/  
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e.g., Co-Array Fortran, UPC 
+ support a shared namespace, like shared-memory 
+ support a strong sense of ownership and locality 

• each variable is stored in a particular memory segment 
• tasks can access any visible variable, local or remote 
• local variables are cheaper to access than remote ones 

+ implicit communication eases user burden; permits 
compiler to use best mechanisms available 
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e.g., Co-Array Fortran, UPC 
– restricted to SPMD programming and execution models 

– data structures not as flexible/rich as one might like 

– retain many of the downsides of shared-memory 

 error cases, memory consistency models 
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Who is Cray? 

PGAS Languages 

Chapel and PGAS 

 Chapel Motivation 

 Chapel Features 

 Project Status 
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 An emerging parallel programming language 

 Design and development led by Cray Inc. 
 in collaboration with academia, labs, industry 

 Initiated under the DARPA HPCS program 
 

 Overall goal: Improve programmer productivity 
 Improve the programmability of parallel computers 

 Match or beat the performance of current programming models 

 Support better portability than current programming models 

 Improve the robustness of parallel codes 
 

 A work-in-progress 
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 Being developed as open source at SourceForge 
 

 Licensed as BSD software 
 

 Target Architectures: 
 Cray architectures 

 multicore desktops and laptops 

 commodity clusters 

 systems from other vendors 

 in-progress: CPU+accelerator hybrids, manycore, … 
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 Chapel differs from UPC/CAF because it’s not SPMD 
“global name-/address space” comes from lexical scoping  

 rather than: “We’re all running the same program, so we must all have a 
variable named x” 

 as in traditional languages, each declaration yields one variable 

 stored on locale where task executes, not everywhere/thread 0 

 user-level concept of locality is central to language 
 parallelism and locality are two distinct things 

 should never think in terms of “that other copy of the program” 
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var i: int; 
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var i: int; 

on Locales[1] { 
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var i: int; 

on Locales[1] { 

  var j: int; 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      var k: int; 

    } 

  } 

} 
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How public a variable is depends only on scoping 
 who can see it? 

 who actually bothers to refer to it non-locally? 

var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      var k = i + j; 

} } } 
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e.g., Chapel (possibly X10, Fortress) 
+ breaks out of SPMD mold via global multithreading 

+ richer set of distributed data structures 

– retains many of the downsides of shared-memory 

 error cases, memory consistency models 
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Who is Cray? 

PGAS Languages 

Chapel and PGAS 

Chapel Motivation 

 Chapel Features 

 Project Status 
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures: 
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel: 
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel (distributed memory): 
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel (distributed memory multicore): 
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#include <hpcc.h> 

 

 

 

 

static int VectorSize; 

static double *a, *b, *c; 

 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 

 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 

 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 

0, comm ); 

 

  return errCount; 

} 

 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 

 

  VectorSize = HPCC_LocalVectorSize( params, 3, 

sizeof(double), 0 ); 

 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 

 

MPI 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory 

(%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 

 

 

 

 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 

 

  scalar = 3.0; 

 

 

 

 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 

 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 

 

  return 0; 

} 
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#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 

 

static int VectorSize; 

static double *a, *b, *c; 

 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 

 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 

 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 

0, comm ); 

 

  return errCount; 

} 

 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 

 

  VectorSize = HPCC_LocalVectorSize( params, 3, 

sizeof(double), 0 ); 

 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 

 

MPI + OpenMP 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory 

(%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 

 

  scalar = 3.0; 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 

 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 

 

  return 0; 

} 
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#define N       2000000 

 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 

 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 

 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 

 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 

 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 

 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 

 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 

 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

HPC suffers from too many distinct notations for expressing parallelism and locality 
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HPC has traditionally given users… 
…low-level, control-centric programming models 

…ones that are closely tied to the underlying hardware 

…ones that support only a single type of parallelism 
 

Examples: 
 

 

 

 

 
 

benefits: lots of control; decent generality; easy to implement 
downsides: lots of user-managed detail; brittle to changes 

 

Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node MPI executable 

Intra-node/multicore OpenMP/pthreads iteration/task 

Instruction-level vectors/threads pragmas iteration 

GPU/accelerator CUDA/OpenCL/OpenAcc SIMD function/task 
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#define N       2000000 

 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 

 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 

 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 

 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 

 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 

 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 

 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 

 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

HPC suffers from too many distinct notations for expressing parallelism and locality 
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#define N       2000000 

 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 

 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 

 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 

 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 

 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 

 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 

 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 

 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 
 

 

 

config const m = 1000, 

             alpha = 3.0; 
 

const ProblemSpace = {1..m} dmapped …; 
 

var A, B, C: [ProblemSpace] real; 
 

B = 2.0;           

C = 3.0; 
 

A = B + alpha * C; 

the special 
sauce 

Chapel 

Philosophy:  Good language design can tease details of locality and 
parallelism away from an algorithm, permitting the compiler, runtime, 
applied scientist, and HPC expert to each focus on their strengths. 
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1) General Parallel Programming 

2) Multiresolution Design 

3) Reduce HPC ↔ Mainstream Language Gap 
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Style of HW Parallelism Programming Model Unit of Parallelism 

Inter-node MPI executable 

Intra-node/multicore OpenMP/pthreads iteration/task 

Instruction-level vectors/threads pragmas iteration 

GPU/accelerator CUDA/OpenCL SIMD 
function/task 

With a unified set of concepts... 
 

...express any parallelism desired in a user’s program 
 Styles: data-parallel, task-parallel, concurrency, nested, … 

 Levels: model, function, loop, statement, expression 

...target all parallelism available in the hardware 
 Types: machines, nodes, cores, instructions 

54 

Style of HW Parallelism Programming Model Unit of Parallelism 

Inter-node Chapel executable/task 

Intra-node/multicore Chapel iteration/task 

Instruction-level vectors/threads Chapel iteration 

GPU/accelerator Chapel SIMD 
function/task 
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MPI 

OpenMP 

Pthreads 

Target Machine 

Low-Level 
Implementation 

Concepts 

“Why is everything so tedious/difficult?” 

“Why don’t my programs port trivially?” 
“Why don’t I have more control?” 

ZPL 

HPF 

Target Machine 

High-Level 
Abstractions 



Multiresolution Design: Support multiple tiers of features 

 higher levels for programmability, productivity 

 lower levels for greater degrees of control 

 

 

 

 

 

 

 build the higher-level concepts in terms of the lower 

 permit the user to intermix layers arbitrarily 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 

Chapel language concepts 
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Consider: 
 Students graduate with training in Java, Matlab, Perl, Python 

 Yet HPC programming is dominated by Fortran, C/C++, MPI 

 

We’d like to narrow this gulf with Chapel: 
 to leverage advances in modern language design 

 to better utilize the skills of the entry-level workforce... 

 ...while not alienating the traditional HPC programmer 
 e.g., support object-oriented programming, but make it optional 
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Who is Cray? 

PGAS Languages 

Chapel and PGAS 

Chapel Motivation 

Chapel Features 

 Project Status 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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const pi = 3.14,           // pi is a real 

      coord = 1.2 + 3.4i,  // coord is a complex… 

      coord2 = pi*coord,   // …as is coord2 

      name = “brad”,       // name is a string 

      verbose = false;     // verbose is boolean 

 

proc addem(x, y) {         // addem() has generic arguments 

  return x + y;            //   and an inferred return type 

} 

 

var sum = addem(1, pi),              // sum is a real 

    fullname = addem(name, “ford”);  // fullname is a string 

 

writeln((sum, fullname)); 
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(4.14, bradford) 
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const r = 1..10; 

 

printVals(r # 3); 

printVals(r # -3); 

printVals(r by 2); 

printVals(r by -2); 

printVals(r by 2 # 3); 

printVals(r # 3 by 2); 

 

proc printVals(r) { 

  for i in r do 

    write(r, “ “); 

  writeln(); 

} 

1 2 3 

8 9 10 

1 3 5 7 9 

10 8 6 4 2 

1 3 5 

1 3 
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iter fibonacci(n) { 

  var current = 0, 

      next = 1; 

  for 1..n { 

    yield current; 

    current += next; 

    current <=> next; 

  } 

} 

for f in fibonacci(7) do 

  writeln(f); 

0 

1 

1 

2 

3 

5 

8 

iter tiledRMO(D, tilesize) { 

  const tile = {0..#tilesize, 

                0..#tilesize}; 

  for base in D by tilesize do 

    for ij in D[tile + base] do 

      yield ij; 

} 

for ij in tiledRMO(D, 2) do 

  write(ij); 

(1,1)(1,2)(2,1)(2,2) 

(1,3)(1,4)(2,3)(2,4) 

(1,5)(1,6)(2,5)(2,6) 

… 

(3,1)(3,2)(4,1)(4,2) 
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for (i,f) in zip(0..#n, fibonacci(n)) do 

  writeln(“fib #”, i, “ is ”, f); 

fib #0 is 0 

fib #1 is 1 

fib #2 is 1 

fib #3 is 2 

fib #4 is 3 

fib #5 is 5 

fib #6 is 8 

… 



 tuple types 

 compile-time features for meta-programming 
 e.g., compile-time functions to compute types, params 

 rank-independent programming features 

 value- and reference-based OOP 

 argument intents, default values, match-by-name 

 overloading, where clauses 

 modules (for namespace management) 

 … 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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coforall t in 0..#numTasks do 

  writeln(“Hello from task ”, t, “ of ”, numTasks); 

 

writeln(“All tasks done”); 

Hello from task 2 of 4 

Hello from task 0 of 4 

Hello from task 3 of 4 

Hello from task 1 of 4 

All tasks done 
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// create a task per child statement 

cobegin { 

  producer(1); 

  producer(2); 

  consumer(1); 

}  // logical join of the three tasks here 



cobegin { 

  producer(); 

  consumer(); 

} 
 

// ‘sync’ types store full/empty state along with value 

var buff$: [0..#buffersize] sync real; 
 

proc producer() { 

  var i = 0; 

  for … { 

    i = (i+1) % buffersize; 

    buff$[i] = …;   // reads block until empty, leave full 

} } 
 

proc consumer() { 

  var i = 0; 

  while … { 

    i= (i+1) % buffersize; 

    …buff$[i]…;    // writes block until full, leave empty 

} } 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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Definition: 
 Abstract unit of target architecture 

 Supports reasoning about locality 

 Capable of running tasks and storing variables 
 i.e., has processors and memory 

 

Typically: A multi-core processor or SMP* node 
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 Specify # of locales when running Chapel programs 

 

 

 Chapel provides built-in locale variables 

 

 

71 

% a.out --numLocales=8 

config const numLocales: int = …; 

const Locales: [0..#numLocales] locale = …; 

L0 L1 L2 L3 L4 L5 L6 L7 Locales: 

% a.out –nl 8 



 Locale methods support queries about target system: 

 

 

 

 

 On-clauses support placement of computations: 
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proc locale.physicalMemory(…) { … } 

proc locale.numCores { … } 

proc locale.id { … } 

proc locale.name { … } 

writeln(“on locale 0”); 

 

on Locales[1] do 

  writeln(“now on locale 1”); 

 

writeln(“on locale 0 again”); 

cobegin { 

  on A[i,j] do 

    bigComputation(A); 

 

  on node.left do 

    search(node.left); 

} 



Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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Chapel supports several types of domains (index sets) : 
 

 

 

 

 

 
dense strided sparse 

unstructured 

“steve” 
“lee” 
“sung” 
“david” 
“jacob” 
“albert” 
“brad” 

associative 
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Each domain type can be used to declare arrays: 
 

 

 

 

 

 
dense strided sparse 

unstructured 

“steve” 
“lee” 
“sung” 
“david” 
“jacob” 
“albert” 
“brad” 

associative 
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 Parallel and Serial Iteration 

 

 

 Array Slicing; Domain Algebra 

 

 

 Promotion of Scalar Operators and Functions 

 
 

 And several others:  indexing, reallocation, set 
operations, remapping, aliasing, queries, … 

4.3 4.4 4.1 4.2 4.5 4.6 4.7 4.8 

1.3 1.4 1.1 1.2 1.5 1.6 1.7 1.8 

2.3 2.4 2.1 2.2 2.5 2.6 2.7 2.8 

3.3 3.4 3.1 3.2 3.5 3.6 3.7 3.8 

A = forall (i,j) in D do (i + j/10.0); 

A[InnerD] = B[InnerD+(0,1)]; = 

A = B + alpha * C; A = exp(B, C); 
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Q1: How are arrays laid out in memory? 
 Are regular arrays laid out in row- or column-major order?  Or…? 

 

 

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?) 

 
 

Q2: How are arrays stored by the locales? 
 Completely local to one locale?  Or distributed? 

 If distributed… In a blocked manner?  cyclically?  block-cyclically?  
recursively bisected?  dynamically rebalanced?  …? 

 

dynamically

…? 

…? 
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Q1: How are arrays laid out in memory? 
 Are regular arrays laid out in row- or column-major order?  Or…? 

 

 

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?) 

 
 

Q2: How are arrays stored by the locales? 
 Completely local to one locale?  Or distributed? 

 If distributed… In a blocked manner?  cyclically?  block-cyclically?  
recursively bisected?  dynamically rebalanced?  …? 

 

…? 

…? A: Chapel’s domain maps are designed to give the user 
full control over such decisions 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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Domain maps are “recipes” that instruct the compiler 
how to map the global view of a computation… 

= 

+ 

α • 

Locale 0 

= 

+ 

α • 

= 

+ 

α • 

= 

+ 

α • 

Locale 1 Locale 2 

 …to the target locales’ memory and processors: 

A = B + alpha * C; 
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const ProblemSpace = {1..m}; 

  

                   

 

var A, B, C: [ProblemSpace] real; 

 

 

 

A = B + alpha * C; 
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= 

α· 
+ 



  

 

const ProblemSpace = {1..m}; 

  

                   

 

var A, B, C: [ProblemSpace] real; 

 

 

 

A = B + alpha * C; 
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= 

α· 
+ 

No domain map specified => use default layout 
• current locale owns all indices and values 
• computation will execute using local processors only 



  

 

const ProblemSpace = {1..m} 

                       dmapped Block(boundingBox={1..m}); 

                   

 

var A, B, C: [ProblemSpace] real; 

 

 

 

A = B + alpha * C; 

83 

= 

α· 
+ 



  

 

const ProblemSpace = {1..m} 

                       dmapped Cyclic(startIdx=1); 

                  

 

var A, B, C: [ProblemSpace] real; 

 

 

 

A = B + alpha * C; 
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= 

α· 
+ 

startIdx = 1 



All Chapel domain types support domain maps 
 

 

 

 

 

 
dense strided sparse 

unstructured 

“steve” 
“lee” 
“sung” 
“david” 
“jacob” 
“albert” 
“brad” 

associative 
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1. Chapel provides a library of standard domain maps 
 to support common array implementations effortlessly 
 

2. Advanced users can write their own domain maps in Chapel 
 to cope with shortcomings in our standard library 

 
 

 

 

 

 

 

 

3. Chapel’s standard domain maps are written using the same 
end-user framework 
 to avoid a performance cliff between “built-in” and user-defined cases 
 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Locality Control 
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HotPAR’10: User-Defined Distributions and Layouts in Chapel: 
Philosophy and Framework                        
Chamberlain, Deitz, Iten, Choi; June 2010 

 

CUG 2011: Authoring User-Defined Domain Maps in Chapel 
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011 

 

Chapel release: 

 Technical notes detailing domain map interface for programmers:  

       $CHPL_HOME/doc/technotes/README.dsi 

 Current domain maps: 

       $CHPL_HOME/modules/dists/*.chpl 

layouts/*.chpl 

internal/Default*.chpl 
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Who is Cray? 

PGAS Languages 

Chapel and PGAS 

Chapel Motivation 

Chapel Features 

Project Status 
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In a nutshell: 
 Most features work at a functional level 

 Many performance optimizations remain 
 particularly for distributed memory (multi-locale) execution 

 

This is a good time to: 
 Try out the language and compiler 

 Use Chapel for non-performance-critical projects 

 Give us feedback to improve Chapel 

 Use Chapel for parallel programming education 
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 In teaching parallel programming, I like to cover: 
 data parallelism 

 task parallelism 

 concurrency 

 synchronization 

 locality/affinity 

 deadlock, livelock, and other pitfalls 

 performance tuning 

 … 
 

 I don’t think there’s been a good language out there… 
 for teaching all of these things 

 for teaching some of these things well at all 

 until now: We believe Chapel can potentially play a crucial role here 
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http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
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 Lightweight Tasking using Qthreads: Sandia (Kyle Wheeler, Dylan Stark, Rich Murphy) 

 paper at CUG, May 2011 

 Parallel File I/O, Bulk-Copy Opt: U Malaga (Rafael Asenjo, Maria Angeles Navarro, et al.) 

 papers at ParCo, Aug 2011; SBAC-PAD, Oct 2012 

 I/O, LLVM back-end, etc.: LTS (Michael Ferguson, Matthew Lentz, Joe Yan, et al.) 

 Interoperability via Babel/BRAID: LLNL/Rice (Tom Epperly, Adrian Prantl, Shams Imam) 

 paper at PGAS, Oct 2011 

 Application Studies: LLNL (Rob Neely, Bert Still, Jeff Keasler) 

 Interfaces/Generics/OOP: CU Boulder (Jeremy Siek, Jonathan Turner, et al.) 

 Futures/Task-based Parallelism: Rice (Vivek Sarkar, Shams Imam, Sagnak Tasirlar, et al.) 

 Lightweight Tasking using MassiveThreads: U Tokyo (Kenjiro Taura, Jun Nakashima) 

 CPU-accelerator Computing: UIUC (David Padua, Albert Sidelnik, Maria Garzarán) 

 paper at IPDPS, May 2012 

 Model Checking and Verification:  U Delaware (Stephen Siegel, T. Zirkel, T. McClory) 

 Chapel-MPI Compatibility: Argonne (Pavan Balaji, Rajeev Thakur, Rusty Lusk, Jim Dinan) 
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http://chapel.cray.com/collaborations.html


Higher-level programming models can help insulate 
algorithms from parallel implementation details 
 yet, without necessarily abdicating control 

 Chapel does this via its multiresolution design 
 Here, we saw it in domain maps 

 

We believe Chapel can greatly improve productivity 
…for current and emerging HPC architectures 

…and for the growing need for parallel programming in the 
mainstream 
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Chapel project page: http://chapel.cray.com  
 overview, papers, presentations, language spec, … 

Chapel SourceForge page: https://sourceforge.net/projects/chapel/ 

 release downloads, public mailing lists, code repository, … 

Blog Series: 

 Myths About Scalable Programming Languages: 
      https://www.ieeetcsc.org/activities/blog/ 

Mailing Lists: 
 chapel_info@cray.com: contact the team  

 chapel-users@lists.sourceforge.net: user-oriented discussion list 

 chapel-developers@lists.sourceforge.net: dev.-oriented discussion 
 chapel-education@lists.sourceforge.net: educator-oriented discussion 

 chapel-bugs@lists.sourceforge.net: public bug forum 
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http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
https://www.ieeetcsc.org/activities/blog/


http://sourceforge.net/projects/chapel/ http://chapel.cray.com  chapel_info@cray.com 

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

