
Brad Chamberlain

Applied Mathematics 483/583

May 29th, 2013

2

3

For more information: http://www.olcf.ornl.gov/titan/

Titan
• compute nodes: 18,688
• processors: 16-core AMD/node = 299,008 cores
• GPUs: 18,688 NVIDIA Tesla K20s
• memory: 32 + 6 GB/node = 710 TB total
• peak speed: 20+ petaflops
• floorspace: 4,352 square feet

http://www.olcf.ornl.gov/titan/

4

For more information: https://bluewaters.ncsa.illinois.edu/

Blue Waters
• compute nodes: 25,712
• processors: 386,816 AMD cores
• GPUs: 3,072 NVIDIA Kepler GPUs
• memory: 1.476 PB total
• peak speed: 11.61 petaflops

https://bluewaters.ncsa.illinois.edu/
https://bluewaters.ncsa.illinois.edu/

Who is Cray?

PGAS Languages

 Chapel and PGAS

 Chapel Motivation

 Chapel Features

 Project Status

5

e.g., OpenMP, Pthreads
+ support dynamic, fine-grain parallelism

+ considered simpler, more like traditional programming
 “if you want to access something, simply name it”

– no support for expressing locality/affinity; limits scalability

– bugs can be subtle, difficult to track down (race conditions)

– tend to require complex memory consistency models

6

e.g., MPI
+ a more constrained model; can only access local data

+ runs on most large-scale parallel platforms
 and for many of them, can achieve near-optimal performance

+ is relatively easy to implement

+ can serve as a strong foundation for higher-level models

+ users have been able to get real work done with it

7

e.g., MPI
– communication must be used to get copies of remote data

– tends to reveal too much about how to transfer data, not simply what

– only supports “cooperating executable”-level parallelism

– couples data transfer and synchronization

– has frustrating classes of bugs of its own
– e.g., mismatches between sends/recvs, buffer overflows, etc.

8

(Or perhaps: partitioned global namespace languages)

 abstract concept:
 support a shared namespace on distributed memory

 permit any parallel task to access any lexically visible variable

 doesn’t matter if it’s local or remote

shared name-/address space

private
space 0

private
space 1

private
space 2

private
space 3

private
space 4

9

(Or perhaps: partitioned global namespace languages)

 abstract concept:
 support a shared namespace on distributed memory

 permit any parallel task to access any lexically visible variable

 doesn’t matter if it’s local or remote

 establish a strong sense of ownership
 every variable has a well-defined location

 local variables are cheaper to access than remote ones

private
space 0

private
space 1

private
space 2

private
space 3

private
space 4

partitioned shared name-/address space

10

PGAS founding members: Co-Array Fortran, UPC,

Titanium
 extensions to Fortran, C, and Java, respectively

 details vary, but potential for:

 arrays that are decomposed across compute nodes

 pointers that refer to remote objects

 note that earlier languages could also be considered PGAS, but

the term hadn’t been coined yet

11

CAF: The first of our “traditional” PGAS languages
 developed ~1994

 adopted into the 2008 Fortran standard

Motivating Philosophy: “What is the smallest change
required to convert Fortran 95 into a robust parallel language?”

 originally referred to as F-- to emphasize “smallest change”

12

 SPMD programming/execution model
 similar to MPI* in this regard

 program copies are referred to as ‘images’

 Use intrinsic functions to query the basics:
integer :: p, me

p = num_images() ! returns number of processes

me = this_image() ! returns value in 1..num_images()

 Barrier sync:
sync_all() ! wait for all processes/images

*= typical uses of it, anyway

13

Co-Dimension: an array dimension that refers to the
space of CAF images (processes)

 defined using square brackets
(distinguishes it syntactically from a traditional dimension)

Co-array variables:
integer i[*] ! declares an integer, i, per image

real x[*] ! declares a float, x, per image

real a(20)[*] ! declares a 20-element array per image

real b(N,N)[*] ! declares an N x N array per image

 14

Co-array variables:
integer i[*] ! declares an integer, i, per image

 Of course, traditional variables also result in a copy per
image (it’s SPMD after all), but private to that image
integer j ! declares a private integer, j, per image

15

i

j

i

j j j j

i i i

integer i[*]

real x[*]

 Refer to other images’ values via co-array indexing:

if (me == 2) then

 nextX = x[me+1] ! read neighbor’s value of x
 i[1] = i ! copy my value of ‘i’ into image 1’s
endif

 Co-array indexing/square brackets ⇒ communication

16

 Program in SPMD style

 Communicate via variables with co-dimensions
 a copy per program image

 refer to other images’ copies via square bracket subscripts

 take advantage of good multidimensional array support
 multidimensional views of process grid

 multidimensional views of local data

 syntactic support for slicing (:)

 Other stuff too, but this gives you the main idea

 Adopted into Fortran 2008 standard
 see also http://www.co-array.org

17

http://www.co-array.org
http://www.co-array.org
http://www.co-array.org

UPC: Our second “traditional” PGAS language
 developed ~1999

 “unified” in the sense that it combined 3 distinct parallel C’s:
 AC, Split-C, Parallel C Preprocessor

 though a sibling to CAF, philosophically quite different

Motivating Philosophy:
 extend C concepts logically to support SPMD execution

 1D arrays

 for loops

 pointers (and pointer/array equivalence)

18

 SPMD programming/execution model
 program copies are referred to as ‘threads’

 Built-in constants provide the basics:
int p, me;

p = THREADS; // returns number of processes

me = MYTHREAD; // returns a value in 0..THREADS-1

 Barrier synch statement:
upc_barrier; // wait for all processes/threads

19

 Arrays declared with the ‘shared’ keyword are
distributed within the shared space

 uses a cyclic distribution by default
#define N 10

shared float a[N], b[N], c[N];

20

a[0] a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9]

b[] and c[] distributed similarly

 Arrays declared with the ‘shared’ keyword are
distributed within the shared space

 uses a cyclic distribution by default
#define N 10

shared float a[N], b[N], c[N];

upc_forall (int i=0; i<N; i++; i) {

 c[i] = a[i] + alpha * b[i];

}

21

a[0]

i i i i i

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9]

Affinity field: Which thread
should execute this iteration?
(if int, %THREADS to get ID)

 Arrays declared with the ‘shared’ keyword are
distributed within the shared space

 can specify a block-cyclic distribution as well
#define N 10

shared [2] float a[N], b[N], c[N];

upc_forall (int i=0; i<N; i++; &c[i]) {

 c[i] = a[i] + alpha * b[i];

}

22

a[0]

i i i i i

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Affinity field: Which thread
should execute this iteration?
(if ptr-to-shared, owner does)

 Somewhat confusingly (to me anyway*), shared
scalars in UPC result in a single copy on thread 0

int i;

shared int j;

* = because it seems contrary to SPMD programming

23

j

i i i i i

 UPC Pointers may be private/shared and may point to
private/shared

int* PP; // private pointer to local data

24

i

PP

i i i i

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

j

PP PP PP PP

 UPC Pointers may be private/shared and may point to
private/shared

int* PP; // private pointer to local data

shared int* PS; // private pointer to shared data

25

i

PP

i i i i PS

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

j

PP

PS

PP

PS

PP

PS

PP

PS

 UPC Pointers may be private/shared and may point to
private/shared

int* PP; // private pointer to local data

shared int* PS; // private pointer to shared data

shared int* shared ss; // shared pointer to shared

data

26

i

PP

i i i i PS

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

ss

j

PP

PS

PP

PS

PP

PS

PP

PS

 Program in SPMD style

 Communicate via shared arrays/pointers
 cyclic and block-cyclic arrays

 pointers to shared and private data

 array-pointer equivalence

 Other stuff too, but this gives you the main idea

 For more information, see https://upc-lang.org/upc/

27

https://upc-lang.org/upc/
https://upc-lang.org/upc/
https://upc-lang.org/upc/
https://upc-lang.org/upc/

e.g., Co-Array Fortran, UPC
+ support a shared namespace, like shared-memory
+ support a strong sense of ownership and locality

• each variable is stored in a particular memory segment
• tasks can access any visible variable, local or remote
• local variables are cheaper to access than remote ones

+ implicit communication eases user burden; permits
compiler to use best mechanisms available

28

e.g., Co-Array Fortran, UPC
– restricted to SPMD programming and execution models

– data structures not as flexible/rich as one might like

– retain many of the downsides of shared-memory

 error cases, memory consistency models

29

Who is Cray?

PGAS Languages

Chapel and PGAS

 Chapel Motivation

 Chapel Features

 Project Status

30

 An emerging parallel programming language

 Design and development led by Cray Inc.
 in collaboration with academia, labs, industry

 Initiated under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

31

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 Cray architectures

 multicore desktops and laptops

 commodity clusters

 systems from other vendors

 in-progress: CPU+accelerator hybrids, manycore, …

32

 Chapel differs from UPC/CAF because it’s not SPMD
“global name-/address space” comes from lexical scoping

 rather than: “We’re all running the same program, so we must all have a
variable named x”

 as in traditional languages, each declaration yields one variable

 stored on locale where task executes, not everywhere/thread 0

 user-level concept of locality is central to language
 parallelism and locality are two distinct things

 should never think in terms of “that other copy of the program”

33

var i: int;

34

i

var i: int;

on Locales[1] {

35

i

var i: int;

on Locales[1] {

 var j: int;

36

i j

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

37

i j

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

 var k: int;

 }

 }

}

38

i j k k k k k

How public a variable is depends only on scoping
 who can see it?

 who actually bothers to refer to it non-locally?

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

 var k = i + j;

} } }

39

i j k k k k k

i j

k k k k k

e.g., Chapel (possibly X10, Fortress)
+ breaks out of SPMD mold via global multithreading

+ richer set of distributed data structures

– retains many of the downsides of shared-memory

 error cases, memory consistency models

40

MPI

OpenMP

P
G

A
S

La
n

gu
ag

es

Chapel

memory
model

CAF

UPC

Titanium

PGAS

distributed
memory

shared
memory

PGAS

programming
model

execution
model

global-view
parallelism

global-view
parallelism

 shared memory
multithreaded

distributed
memory

multithreaded

cooperating executables
(often SPMD in practice)

Single Program, Multiple Data
(SPMD)

co-arrays

1D block-cyc arrays/
distributed pointers

class-based arrays/
distributed pointers

co-array refs

implicit

method-based

N/A

implicit

APIs

shared
memory

arrays

manually
fragmented

global-view
distributed

arrays

communication

data
structures

41

Who is Cray?

PGAS Languages

Chapel and PGAS

Chapel Motivation

 Chapel Features

 Project Status

42

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + αCi

In pictures:

43

=

α

+

A

B

C

·

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + αCi

In pictures, in parallel:

44

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·

α

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory):

45

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory multicore):

46

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

47

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

48

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

49

HPC has traditionally given users…
…low-level, control-centric programming models

…ones that are closely tied to the underlying hardware

…ones that support only a single type of parallelism

Examples:

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL/OpenAcc SIMD function/task

50

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

51

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

the special
sauce

Chapel

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert to each focus on their strengths.

52

1) General Parallel Programming

2) Multiresolution Design

3) Reduce HPC ↔ Mainstream Language Gap

53

Style of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL SIMD
function/task

With a unified set of concepts...

...express any parallelism desired in a user’s program
 Styles: data-parallel, task-parallel, concurrency, nested, …

 Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
 Types: machines, nodes, cores, instructions

54

Style of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel executable/task

Intra-node/multicore Chapel iteration/task

Instruction-level vectors/threads Chapel iteration

GPU/accelerator Chapel SIMD
function/task

55

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs port trivially?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level
Abstractions

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower

 permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

56

Consider:
 Students graduate with training in Java, Matlab, Perl, Python

 Yet HPC programming is dominated by Fortran, C/C++, MPI

We’d like to narrow this gulf with Chapel:
 to leverage advances in modern language design

 to better utilize the skills of the entry-level workforce...

 ...while not alienating the traditional HPC programmer
 e.g., support object-oriented programming, but make it optional

57

Who is Cray?

PGAS Languages

Chapel and PGAS

Chapel Motivation

Chapel Features

 Project Status

58

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

59

const pi = 3.14, // pi is a real

 coord = 1.2 + 3.4i, // coord is a complex…

 coord2 = pi*coord, // …as is coord2

 name = “brad”, // name is a string

 verbose = false; // verbose is boolean

proc addem(x, y) { // addem() has generic arguments

 return x + y; // and an inferred return type

}

var sum = addem(1, pi), // sum is a real

 fullname = addem(name, “ford”); // fullname is a string

writeln((sum, fullname));

60

(4.14, bradford)

61

const r = 1..10;

printVals(r # 3);

printVals(r # -3);

printVals(r by 2);

printVals(r by -2);

printVals(r by 2 # 3);

printVals(r # 3 by 2);

proc printVals(r) {

 for i in r do

 write(r, “ “);

 writeln();

}

1 2 3

8 9 10

1 3 5 7 9

10 8 6 4 2

1 3 5

1 3

62

iter fibonacci(n) {

 var current = 0,

 next = 1;

 for 1..n {

 yield current;

 current += next;

 current <=> next;

 }

}

for f in fibonacci(7) do

 writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

 const tile = {0..#tilesize,

 0..#tilesize};

 for base in D by tilesize do

 for ij in D[tile + base] do

 yield ij;

}

for ij in tiledRMO(D, 2) do

 write(ij);

(1,1)(1,2)(2,1)(2,2)

(1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

63

for (i,f) in zip(0..#n, fibonacci(n)) do

 writeln(“fib #”, i, “ is ”, f);

fib #0 is 0

fib #1 is 1

fib #2 is 1

fib #3 is 2

fib #4 is 3

fib #5 is 5

fib #6 is 8

…

 tuple types

 compile-time features for meta-programming
 e.g., compile-time functions to compute types, params

 rank-independent programming features

 value- and reference-based OOP

 argument intents, default values, match-by-name

 overloading, where clauses

 modules (for namespace management)

 …

64

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

65

66

coforall t in 0..#numTasks do

 writeln(“Hello from task ”, t, “ of ”, numTasks);

writeln(“All tasks done”);

Hello from task 2 of 4

Hello from task 0 of 4

Hello from task 3 of 4

Hello from task 1 of 4

All tasks done

67

// create a task per child statement

cobegin {

 producer(1);

 producer(2);

 consumer(1);

} // logical join of the three tasks here

cobegin {

 producer();

 consumer();

}

// ‘sync’ types store full/empty state along with value

var buff$: [0..#buffersize] sync real;

proc producer() {

 var i = 0;

 for … {

 i = (i+1) % buffersize;

 buff$[i] = …; // reads block until empty, leave full

} }

proc consumer() {

 var i = 0;

 while … {

 i= (i+1) % buffersize;

 …buff$[i]…; // writes block until full, leave empty

} }

68

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

69

Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A multi-core processor or SMP* node

70

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

71

% a.out --numLocales=8

config const numLocales: int = …;

const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7 Locales:

% a.out –nl 8

 Locale methods support queries about target system:

 On-clauses support placement of computations:

72

proc locale.physicalMemory(…) { … }

proc locale.numCores { … }

proc locale.id { … }

proc locale.name { … }

writeln(“on locale 0”);

on Locales[1] do

 writeln(“now on locale 1”);

writeln(“on locale 0 again”);

cobegin {

 on A[i,j] do

 bigComputation(A);

 on node.left do

 search(node.left);

}

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

73

Chapel supports several types of domains (index sets) :

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative

74

Each domain type can be used to declare arrays:

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative

75

 Parallel and Serial Iteration

 Array Slicing; Domain Algebra

 Promotion of Scalar Operators and Functions

 And several others: indexing, reallocation, set
operations, remapping, aliasing, queries, …

4.3 4.4 4.1 4.2 4.5 4.6 4.7 4.8

1.3 1.4 1.1 1.2 1.5 1.6 1.7 1.8

2.3 2.4 2.1 2.2 2.5 2.6 2.7 2.8

3.3 3.4 3.1 3.2 3.5 3.6 3.7 3.8

A = forall (i,j) in D do (i + j/10.0);

A[InnerD] = B[InnerD+(0,1)]; =

A = B + alpha * C; A = exp(B, C);

76

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

dynamically

…?

…?

77

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

…?

…? A: Chapel’s domain maps are designed to give the user
full control over such decisions

78

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

79

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

 …to the target locales’ memory and processors:

A = B + alpha * C;

80

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

81

=

α·
+

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

82

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = {1..m}

 dmapped Block(boundingBox={1..m});

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

83

=

α·
+

const ProblemSpace = {1..m}

 dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

84

=

α·
+

startIdx = 1

All Chapel domain types support domain maps

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative

85

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard domain maps are written using the same
end-user framework
 to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

86

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers:

 $CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

 $CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

87

Who is Cray?

PGAS Languages

Chapel and PGAS

Chapel Motivation

Chapel Features

Project Status

88

In a nutshell:
 Most features work at a functional level

 Many performance optimizations remain
 particularly for distributed memory (multi-locale) execution

This is a good time to:
 Try out the language and compiler

 Use Chapel for non-performance-critical projects

 Give us feedback to improve Chapel

 Use Chapel for parallel programming education

89

 In teaching parallel programming, I like to cover:
 data parallelism

 task parallelism

 concurrency

 synchronization

 locality/affinity

 deadlock, livelock, and other pitfalls

 performance tuning

 …

 I don’t think there’s been a good language out there…
 for teaching all of these things

 for teaching some of these things well at all

 until now: We believe Chapel can potentially play a crucial role here

90

http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/

91

 Lightweight Tasking using Qthreads: Sandia (Kyle Wheeler, Dylan Stark, Rich Murphy)

 paper at CUG, May 2011

 Parallel File I/O, Bulk-Copy Opt: U Malaga (Rafael Asenjo, Maria Angeles Navarro, et al.)

 papers at ParCo, Aug 2011; SBAC-PAD, Oct 2012

 I/O, LLVM back-end, etc.: LTS (Michael Ferguson, Matthew Lentz, Joe Yan, et al.)

 Interoperability via Babel/BRAID: LLNL/Rice (Tom Epperly, Adrian Prantl, Shams Imam)

 paper at PGAS, Oct 2011

 Application Studies: LLNL (Rob Neely, Bert Still, Jeff Keasler)

 Interfaces/Generics/OOP: CU Boulder (Jeremy Siek, Jonathan Turner, et al.)

 Futures/Task-based Parallelism: Rice (Vivek Sarkar, Shams Imam, Sagnak Tasirlar, et al.)

 Lightweight Tasking using MassiveThreads: U Tokyo (Kenjiro Taura, Jun Nakashima)

 CPU-accelerator Computing: UIUC (David Padua, Albert Sidelnik, Maria Garzarán)

 paper at IPDPS, May 2012

 Model Checking and Verification: U Delaware (Stephen Siegel, T. Zirkel, T. McClory)

 Chapel-MPI Compatibility: Argonne (Pavan Balaji, Rajeev Thakur, Rusty Lusk, Jim Dinan)

 92

http://chapel.cray.com/collaborations.html

Higher-level programming models can help insulate
algorithms from parallel implementation details
 yet, without necessarily abdicating control

 Chapel does this via its multiresolution design
 Here, we saw it in domain maps

We believe Chapel can greatly improve productivity
…for current and emerging HPC architectures

…and for the growing need for parallel programming in the
mainstream

 93

Chapel project page: http://chapel.cray.com
 overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

 release downloads, public mailing lists, code repository, …

Blog Series:

 Myths About Scalable Programming Languages:
 https://www.ieeetcsc.org/activities/blog/

Mailing Lists:
 chapel_info@cray.com: contact the team

 chapel-users@lists.sourceforge.net: user-oriented discussion list

 chapel-developers@lists.sourceforge.net: dev.-oriented discussion
 chapel-education@lists.sourceforge.net: educator-oriented discussion

 chapel-bugs@lists.sourceforge.net: public bug forum
94

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
https://www.ieeetcsc.org/activities/blog/

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

