Conservation Laws and Finite Volume Methods

AMath 574
Winter Quarter, 2017

Randall J. LeVeque
Applied Mathematics
University of Washington

http://faculty.washington.edu/rjl/classes/am574w2017

R.J. LeVeque, University of Washington AMath 574, Winter 2017


http://faculty.washington.edu/rjl/classes/am574w2017/index.html

Outline

Linear acoustics

Diagonalization of linear systems
Meaning of eigenvectors
Characteristic solution for acoustics
Riemann problem for acoustics

Reading: Chapter 3

R.J. LeVeque, University of Washington AMath 574, Winter 2017



Linear acoustics
Example: Linear acoustics in a 1d gas tube

o p(z,t) = pressure perturbation
= | u u(z,t) = velocity

Equations:
P+ kuy =0 Change in pressure due to compression
pur+pr =0 Newton’s second law, F' = ma

where K = bulk modulus, and p = unperturbed density of gas.

Hyperbolic system:

AP MR

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 3.9.1]



Linear acoustics

P 0 =« P _
el S e
This has the form ¢; + Ag, = 0 with
eigenvalues: ' = —¢, A= +e,
where ¢ = \/k/p = speed of sound.
eigenvectors: r! = [ —Z ] ,  ri= [ 4 }

where Z = pc = ,/pk = impedance.

-z z L4 1 [-1 Zz
R‘{1 1]’ R _22{1 Z}
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Riemann Problem

Special initial data:

Joa if <0
“%m_{qT it 2> 0

Example: Acoustics with bursting diaphram (u; = u, = 0)

I

Pressure:

Acoustic waves propagate with speeds +c.
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Riemann Problem for acoustics

Waves propagating in xz—t space:

P L
_u | L
qm

q, a,
1
p

Left-going wave W! = ¢, — ¢; and
right-going wave W? = ¢, — ¢,,, are eigenvectors of A.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 3.9.1]



Diagonalization of linear system

Consider constant coefficient linear system ¢; + Ag, = 0.

Suppose hyperbolic:
e Real eigenvalues \' < A2 < ... <\,

e Linearly independent eigenvectors r!, r2, ..., ™.
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Diagonalization of linear system

Consider constant coefficient linear system ¢; + Ag, = 0.

Suppose hyperbolic:
e Real eigenvalues \' < A2 < ... <\,

m

e Linearly independent eigenvectors r!, r2, ..., ™.
Let R = [r!|r?|---|r™] m x m matrix of eigenvectors.
Then ArP = \PrP means that AR = RA where

Al
)\2
A= _ =diag(\}, A%, ™).

Am
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Diagonalization of linear system

Consider constant coefficient linear system ¢; + Ag, = 0.

Suppose hyperbolic:
e Real eigenvalues \' < A2 < ... <\,

m

e Linearly independent eigenvectors r!, r2, ..., ™.

Let R = [r!|r?|---|r™] m x m matrix of eigenvectors.
Then ArP = A\PrP means that AR = RA where
Al
)\2
A= _ =diag(\}, A%, ™).
Am
AR=RA = A=RAR' and R !'AR=A.
Similarity transformation with R diagonalizes A.
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Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R qi(z,t) + R Aqu(z,t) = 0.
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Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R7lq(z,t) + R Aqu(x,t) = 0.
Introduce RR~! = I:

R 'q(x,t) + RTARR qu(2,t) = 0.
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Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R7lq(z,t) + R Aqu(x,t) = 0.
Introduce RR™! = I:
R 'q(x,t) + RTARR qu(2,t) = 0.
Use R"'AR = A and define w(z,t) = R~ 1q(x,t):

we(z,t) + Awy(z,t) = 0. Since R is constant!
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Diagonalization of linear system
Consider constant coefficient linear system ¢ + Aq, = 0.
Multiply system by R~!:
R7lq(z,t) + R Aqu(x,t) = 0.
Introduce RR™! = I:
R 'q(x,t) + RTARR qu(2,t) = 0.
Use R"'AR = A and define w(z,t) = R~ 1q(x,t):

we(z,t) + Awy(z,t) = 0. Since R is constant!

This decouples to m independent scalar advection equations:

wh (z,t) + MNPwl(z,t) = 0. p=1,2, ..., m
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Solution to Cauchy problem

Suppose ¢(z,0) = cq)(ac) for —oo <2 < 0.
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Solution to Cauchy problem
Suppose ¢(z,0) = 3(1’) for —oo <2 < 0.
From this initial data we can compute data

(] —19

w(z) = R q(x)
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Solution to Cauchy problem
Suppose ¢(z,0) = 3(1’) for —oo <2 < 0.
From this initial data we can compute data
w(z) = R 'g(x)
The solution to the decoupled equation w! + N wh = 0 is

WP (z,t) = wP(z — AP, 0) = w0 (z — \Pt).
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Solution to Cauchy problem
Suppose ¢(z,0) = Z(x) for —oo <2 < 0.
From this initial data we can compute data
w(z) = R 'g(x)
The solution to the decoupled equation w! + N wh = 0 is
WP (z,t) = wP(z — AP, 0) = w0 (z — \Pt).
Putting these together in vector gives w(x, t) and finally

q(z,t) = Rw(x,t).
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Solution to Cauchy problem
Suppose ¢(z,0) = Z(x) for —oo <2 < 0.
From this initial data we can compute data
w(z) = R 'g(x)
The solution to the decoupled equation w! + N wh = 0 is
WP (z,t) = wP(z — AP, 0) = w0 (z — \Pt).
Putting these together in vector gives w(x, t) and finally
q(z,t) = Rw(x,t).

We can rewrite this as

q(z,t) = pr(x,t) rP = Zz?/p(:c — \Pt)rP
p=1 p=1
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Riemann Problem for acoustics

= wfrt

oyl 2,2
Qr = W, T+ W,

Then
2

o = w0l

So the waves W' and W? are eigenvectors of A:
W =g — @ = (0} — w})r!
W? = gp — g = (0}
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Acoustic waves
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Acoustic waves

o . 7
JIRTES
= wt(z,0)r! + w?(z,0)r?
_ | w2 | )2
—p(x)/(220)
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Acoustic waves
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Acoustic waves

o . 7
JIRTES
= wt(z,0)r! + w?(z,0)r?
_ | w2 | )2
—p(x)/(220)
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Acoustic waves
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Physical meaning of eigenvectors

Eigenvectors for acoustics:
1_ | =poco | _ | =20 2 _ | poco | _ | Zo

I e R e

In a simple 1-wave (propagating at speed \! = —¢),

[ =

The pressure variation is — 7, times the velocity variation.
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Physical meaning of eigenvectors
Eigenvectors for acoustics:
T1Z[P1000}:{1Zo}7 T2:|:p0100:|:|:210:|'
In a simple 1-wave (propagating at speed \! = —¢),
M

The pressure variation is — 7, times the velocity variation.

Similarly, in a simple 2-wave (\? = ),

Pz | Zy
BRI
The pressure variation is Z, times the velocity variation.
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Riemann solution for a linear system

Linear hyperbolic system: ¢; + Aq, = 0 with A = RAR™ ™.
General Riemann problem data ¢;, ¢. € R™.

Decompose jump in ¢ into eigenvectors:

—q = Z aPrP

Note: the vector « of eigen-coefficients is

a=R g —q)=R'¢— R 'q=w—w.

Riemann solution consists of m waves WP € R™:

WP = abrP, propagating with speed s” = AP.
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