Conservation Laws and Finite Volume Methods

AMath 574
Winter Quarter, 2017

Randall J. LeVeque Applied Mathematics
University of Washington

http://faculty.washington.edu/rj//classes/am574w2017

Outline

- Linear acoustics
- Diagonalization of linear systems
- Meaning of eigenvectors
- Characteristic solution for acoustics
- Riemann problem for acoustics

Reading: Chapter 3

Linear acoustics

Example: Linear acoustics in a 1 d gas tube

$$
q=\left[\begin{array}{l}
p \\
u
\end{array}\right] \quad \begin{aligned}
& p(x, t)=\text { pressure perturbation } \\
& u(x, t)=\text { velocity }
\end{aligned}
$$

Equations:

$$
\begin{array}{rll}
p_{t}+\kappa u_{x} & =0 & \\
\rho u_{t}+p_{x} & =0 & \\
\text { Change in pressure due to compression } \\
\text { Newton's second law, } F=m a
\end{array}
$$

where $K=$ bulk modulus, and $\rho=$ unperturbed density of gas.
Hyperbolic system:

$$
\left[\begin{array}{c}
p \\
u
\end{array}\right]_{t}+\left[\begin{array}{cc}
0 & \kappa \\
1 / \rho & 0
\end{array}\right]\left[\begin{array}{l}
p \\
u
\end{array}\right]_{x}=0
$$

Linear acoustics

$$
\left[\begin{array}{l}
p \\
u
\end{array}\right]_{t}+\left[\begin{array}{cc}
0 & \kappa \\
1 / \rho & 0
\end{array}\right]\left[\begin{array}{l}
p \\
u
\end{array}\right]_{x}=0
$$

This has the form $q_{t}+A q_{x}=0$ with

$$
\text { eigenvalues: } \quad \lambda^{1}=-c, \quad \lambda^{2}=+c,
$$

where $c=\sqrt{\kappa / \rho}=$ speed of sound.

$$
\text { eigenvectors: } \quad r^{1}=\left[\begin{array}{c}
-Z \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
Z \\
1
\end{array}\right]
$$

where $Z=\rho c=\sqrt{\rho \kappa}=$ impedance.

$$
R=\left[\begin{array}{cc}
-Z & Z \\
1 & 1
\end{array}\right], \quad R^{-1}=\frac{1}{2 Z}\left[\begin{array}{cc}
-1 & Z \\
1 & Z
\end{array}\right]
$$

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram ($u_{l}=u_{r}=0$)

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem for acoustics

Waves propagating in $x-t$ space:

\qquad

Left-going wave $\mathcal{W}^{1}=q_{m}-q_{l}$ and right-going wave $\mathcal{W}^{2}=q_{r}-q_{m}$ are eigenvectors of A.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvectors $r^{1}, r^{2}, \ldots, r^{m}$.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvectors $r^{1}, r^{2}, \ldots, r^{m}$.

Let $R=\left[r^{1}\left|r^{2}\right| \cdots \mid r^{m}\right] \quad m \times m$ matrix of eigenvectors.
Then $A r^{p}=\lambda^{p} r^{p}$ means that $A R=R \Lambda$ where

$$
\Lambda=\left[\begin{array}{llll}
\lambda^{1} & & & \\
& \lambda^{2} & & \\
& & \ddots & \\
& & & \lambda^{m}
\end{array}\right] \equiv \operatorname{diag}\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{m}\right)
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvectors $r^{1}, r^{2}, \ldots, r^{m}$.

Let $R=\left[r^{1}\left|r^{2}\right| \cdots \mid r^{m}\right] \quad m \times m$ matrix of eigenvectors.
Then $A r^{p}=\lambda^{p} r^{p}$ means that $A R=R \Lambda$ where

$$
\Lambda=\left[\begin{array}{cccc}
\lambda^{1} & & & \\
& \lambda^{2} & & \\
& & \ddots & \\
& & & \lambda^{m}
\end{array}\right] \equiv \operatorname{diag}\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{m}\right)
$$

$A R=R \Lambda \Longrightarrow A=R \Lambda R^{-1}$ and $R^{-1} A R=\Lambda$.
Similarity transformation with R diagonalizes A.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0 .
$$

Use $R^{-1} A R=\Lambda$ and define $w(x, t)=R^{-1} q(x, t)$:

$$
w_{t}(x, t)+\Lambda w_{x}(x, t)=0 . \quad \text { Since } R \text { is constant! }
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0
$$

Use $R^{-1} A R=\Lambda$ and define $w(x, t)=R^{-1} q(x, t)$:

$$
w_{t}(x, t)+\Lambda w_{x}(x, t)=0 . \quad \text { Since } R \text { is constant! }
$$

This decouples to m independent scalar advection equations:

$$
w_{t}^{p}(x, t)+\lambda^{p} w_{x}^{p}(x, t)=0 . \quad p=1,2, \ldots, m
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x) \quad$ for $-\infty<x<\infty$.

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x) \quad$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Putting these together in vector gives $w(x, t)$ and finally

$$
q(x, t)=R w(x, t)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Putting these together in vector gives $w(x, t)$ and finally

$$
q(x, t)=R w(x, t)
$$

We can rewrite this as

$$
q(x, t)=\sum_{p=1}^{m} w^{p}(x, t) r^{p}=\sum_{p=1}^{m} \stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right) r^{p}
$$

Riemann Problem for acoustics

$$
\begin{aligned}
q_{l} & =w_{l}^{1} r^{1}+w_{l}^{2} r^{2} \\
q_{r} & =w_{r}^{1} r^{1}+w_{r}^{2} r^{2}
\end{aligned}
$$

Then

$$
q_{m}=w_{r}^{1} r^{1}+w_{l}^{2} r^{2}
$$

So the waves \mathcal{W}^{1} and \mathcal{W}^{2} are eigenvectors of A :

$$
\begin{aligned}
& \mathcal{W}^{1}=q_{m}-q_{l}=\left(w_{r}^{1}-w_{l}^{1}\right) r^{1} \\
& \mathcal{W}^{2}=q_{r}-q_{m}=\left(w_{r}^{2}-w_{l}^{2}\right) r^{2}
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\left.\left.\begin{array}{rl}
q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right] & =\begin{array}{|}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
\end{array}+\begin{array}{|}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right] \begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.
Similarly, in a simple 2-wave $\left(\lambda^{2}=c_{0}\right)$,

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is Z_{0} times the velocity variation.

Riemann solution for a linear system

Linear hyperbolic system: $q_{t}+A q_{x}=0$ with $A=R \Lambda R^{-1}$.
General Riemann problem data $q_{l}, q_{r} \in \mathbb{R}^{m}$.
Decompose jump in q into eigenvectors:

$$
q_{r}-q_{l}=\sum_{p=1}^{m} \alpha^{p} r^{p}
$$

Note: the vector α of eigen-coefficients is

$$
\alpha=R^{-1}\left(q_{r}-q_{l}\right)=R^{-1} q_{r}-R^{-1} q_{l}=w_{r}-w_{l} .
$$

Riemann solution consists of m waves $\mathcal{W}^{p} \in \mathbb{R}^{m}$:

$$
\mathcal{W}^{p}=\alpha^{p} r^{p}, \quad \text { propagating with speed } s^{p}=\lambda^{p}
$$

