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Linear acoustics

Example: Linear acoustics in a 1d gas tube

q =

[
p
u

]
p(x, t) = pressure perturbation
u(x, t) = velocity

Equations:

pt + κux = 0 Change in pressure due to compression
ρut + px = 0 Newton’s second law, F = ma

where K = bulk modulus, and ρ = unperturbed density of gas.

Hyperbolic system:[
p
u

]
t

+

[
0 κ

1/ρ 0

] [
p
u

]
x

= 0.
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Linear acoustics

[
p
u

]
t

+

[
0 κ

1/ρ 0

] [
p
u

]
x

= 0.

This has the form qt +Aqx = 0 with

eigenvalues: λ1 = −c, λ2 = +c,

where c =
√
κ/ρ = speed of sound.

eigenvectors: r1 =

[
−Z
1

]
, r2 =

[
Z
1

]
where Z = ρc =

√
ρκ = impedance.

R =

[
−Z Z
1 1

]
, R−1 =

1

2Z

[
−1 Z
1 Z

]
.
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Riemann Problem

Special initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Example: Acoustics with bursting diaphram (ul = ur = 0)

Pressure:

Acoustic waves propagate with speeds ±c.
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Riemann Problem for acoustics

Waves propagating in x–t space:

Left-going waveW1 = qm − ql and
right-going waveW2 = qr − qm are eigenvectors of A.
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Diagonalization of linear system

Consider constant coefficient linear system qt +Aqx = 0.

Suppose hyperbolic:
• Real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λm,

• Linearly independent eigenvectors r1, r2, . . . , rm.

Let R = [r1|r2| · · · |rm] m×m matrix of eigenvectors.

Then Arp = λprp means that AR = RΛ where

Λ =


λ1

λ2

. . .
λm

 ≡ diag(λ1, λ2, . . . , λm).

AR = RΛ =⇒ A = RΛR−1 and R−1AR = Λ.
Similarity transformation with R diagonalizes A.
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Diagonalization of linear system

Consider constant coefficient linear system qt +Aqx = 0.

Multiply system by R−1:

R−1qt(x, t) +R−1Aqx(x, t) = 0.

Introduce RR−1 = I:

R−1qt(x, t) +R−1ARR−1qx(x, t) = 0.

Use R−1AR = Λ and define w(x, t) = R−1q(x, t):

wt(x, t) + Λwx(x, t) = 0. Since R is constant!

This decouples to m independent scalar advection equations:

wp
t (x, t) + λpwp

x(x, t) = 0. p = 1, 2, . . . , m.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.9, 3.1]



Diagonalization of linear system

Consider constant coefficient linear system qt +Aqx = 0.

Multiply system by R−1:

R−1qt(x, t) +R−1Aqx(x, t) = 0.

Introduce RR−1 = I:

R−1qt(x, t) +R−1ARR−1qx(x, t) = 0.

Use R−1AR = Λ and define w(x, t) = R−1q(x, t):

wt(x, t) + Λwx(x, t) = 0. Since R is constant!

This decouples to m independent scalar advection equations:

wp
t (x, t) + λpwp

x(x, t) = 0. p = 1, 2, . . . , m.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.9, 3.1]



Diagonalization of linear system

Consider constant coefficient linear system qt +Aqx = 0.

Multiply system by R−1:

R−1qt(x, t) +R−1Aqx(x, t) = 0.

Introduce RR−1 = I:

R−1qt(x, t) +R−1ARR−1qx(x, t) = 0.

Use R−1AR = Λ and define w(x, t) = R−1q(x, t):

wt(x, t) + Λwx(x, t) = 0. Since R is constant!

This decouples to m independent scalar advection equations:

wp
t (x, t) + λpwp

x(x, t) = 0. p = 1, 2, . . . , m.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.9, 3.1]



Diagonalization of linear system

Consider constant coefficient linear system qt +Aqx = 0.

Multiply system by R−1:

R−1qt(x, t) +R−1Aqx(x, t) = 0.

Introduce RR−1 = I:

R−1qt(x, t) +R−1ARR−1qx(x, t) = 0.

Use R−1AR = Λ and define w(x, t) = R−1q(x, t):

wt(x, t) + Λwx(x, t) = 0. Since R is constant!

This decouples to m independent scalar advection equations:

wp
t (x, t) + λpwp

x(x, t) = 0. p = 1, 2, . . . , m.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.9, 3.1]



Solution to Cauchy problem

Suppose q(x, 0) = q
◦
(x) for −∞ < x <∞.

From this initial data we can compute data

w
◦
(x) ≡ R−1q

◦
(x)

The solution to the decoupled equation wp
t + λpwp

x = 0 is

wp(x, t) = wp(x− λpt, 0) = w
◦p

(x− λpt).

Putting these together in vector gives w(x, t) and finally

q(x, t) = Rw(x, t).

We can rewrite this as

q(x, t) =
m∑
p=1

wp(x, t) rp =
m∑
p=1

w
◦p

(x− λpt) rp
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Riemann Problem for acoustics

ql = w1
l r

1 + w2
l r

2

qr = w1
rr

1 + w2
rr

2

Then
qm = w1

rr
1 + w2

l r
2

So the wavesW1 andW2 are eigenvectors of A:

W1 = qm − ql = (w1
r − w1

l )r1

W2 = qr − qm = (w2
r − w2

l )r2.
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Acoustic waves

q(x, 0) =

[
p
◦
(x)
0

]
= −p

◦
(x)
2Z0

[
−Z0

1

]
+ p

◦
(x)
2Z0

[
Z0

1

]

= w1(x, 0)r1 + w2(x, 0)r2

=

[
p
◦
(x)/2

−p◦(x)/(2Z0)

]
+

[
p
◦
(x)/2

p
◦
(x)/(2Z0)

]
.
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Physical meaning of eigenvectors

Eigenvectors for acoustics:

r1 =

[
−ρ0c0

1

]
=

[
−Z0

1

]
, r2 =

[
ρ0c0

1

]
=

[
Z0

1

]
.

In a simple 1-wave (propagating at speed λ1 = −c0),[
px
ux

]
= β(x)

[
−Z0

1

]
The pressure variation is −Z0 times the velocity variation.

Similarly, in a simple 2-wave (λ2 = c0),[
px
ux

]
= β(x)

[
Z0

1

]
The pressure variation is Z0 times the velocity variation.
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Riemann solution for a linear system

Linear hyperbolic system: qt +Aqx = 0 with A = RΛR−1.
General Riemann problem data ql, qr ∈ lRm.

Decompose jump in q into eigenvectors:

qr − ql =

m∑
p=1

αprp

Note: the vector α of eigen-coefficients is

α = R−1(qr − ql) = R−1qr −R−1ql = wr − wl.

Riemann solution consists of m wavesWp ∈ lRm:

Wp = αprp, propagating with speed sp = λp.
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