The Riemann problem

The Riemann problem consists of the hyperbolic equation under study together with initial data of the form

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

Piecewise constant with a single jump discontinuity from q_{l} to q_{r}.

The Riemann problem is fundamental to understanding

- The mathematical theory of hyperbolic problems,
- Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the Riemann problem can often be solved for general q_{l} and q_{r}, and consists of a set of waves propagating at constant speeds.

The Riemann problem for advection

The Riemann problem for the advection equation $q_{t}+u q_{x}=0$ with

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

has solution

$$
q(x, t)=q(x-u t, 0)= \begin{cases}q_{l} & \text { if } x<u t \\ q_{r} & \text { if } x \geq u t\end{cases}
$$

consisting of a single wave of strength $\mathcal{W}^{1}=q_{r}-q_{l}$ propagating with speed $s^{1}=u$.

Riemann solution for advection

$$
q(x, T)
$$

$x-t$ plane

$q(x, 0)$

Discontinuous solutions

Note: The Riemann solution is not a classical solution of the PDE $q_{t}+u q_{x}=0$, since q_{t} and q_{x} blow up at the discontinuity.

Integral form:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=u q\left(x_{1}, t\right)-u q\left(x_{2}, t\right)
$$

Integrate in time from t_{1} to t_{2} to obtain

$$
\begin{array}{rl}
\int_{x_{1}}^{x_{2}} & q\left(x, t_{2}\right) d x-\int_{x_{1}}^{x_{2}} q\left(x, t_{1}\right) d x \\
& =\int_{t_{1}}^{t_{2}} u q\left(x_{1}, t\right) d t-\int_{t_{1}}^{t_{2}} u q\left(x_{2}, t\right) d t
\end{array}
$$

The Riemann solution satisfies the given initial conditions and this integral form for all $x_{2}>x_{1}$ and $t_{2}>t_{1} \geq 0$.

Diffusive flux

$q(x, t)=$ concentration
$\beta=$ diffusion coefficient $(\beta>0)$
diffusive flux $=-\beta q_{x}(x, t)$
$q_{t}+f_{x}=0 \Longrightarrow$ diffusion equation:

$$
\left.q_{t}=\left(\beta q_{x}\right)_{x}=\beta q_{x x} \text { (if } \beta=\mathrm{const}\right) .
$$

Diffusive flux

$q(x, t)=$ concentration
$\beta=$ diffusion coefficient $(\beta>0)$
diffusive flux $=-\beta q_{x}(x, t)$
$q_{t}+f_{x}=0 \Longrightarrow$ diffusion equation:

$$
q_{t}=\left(\beta q_{x}\right)_{x}=\beta q_{x x} \text { (if } \beta=\mathrm{const} \text {). }
$$

Heat equation: Same form, where
$q(x, t)=$ density of thermal energy $=\kappa T(x, t)$,
$T(x, t)=$ temperature, $\kappa=$ heat capacity,
flux $=-\beta T(x, t)=-(\beta / \kappa) q(x, t) \Longrightarrow$

$$
q_{t}(x, t)=(\beta / \kappa) q_{x x}(x, t)
$$

Advection-diffusion

$q(x, t)=$ concentration that advects with velocity u and diffuses with coefficient β :

$$
\text { flux }=u q-\beta q_{x} .
$$

Advection-diffusion equation:

$$
q_{t}+u q_{x}=\beta q_{x x}
$$

If $\beta>0$ then this is a parabolic equation.
Advection dominated if u / β (the Péclet number) is large.
Fluid dynamics: "parabolic terms" arise from

- thermal diffusion and
- diffusion of momentum, where the diffusion parameter is the viscosity.

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

$$
\varepsilon=0.01
$$

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

$$
\varepsilon=0.001
$$

Nonlinear Burgers' equation

Conservation form: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad f(u)=\frac{1}{2} u^{2}$.
Quasi-linear form: $\quad u_{t}+u u_{x}=0$.

Nonlinear Burgers' equation

Conservation form: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad f(u)=\frac{1}{2} u^{2}$.
Quasi-linear form: $\quad u_{t}+u u_{x}=0$.
This looks like an advection equation with u advected with speed u.

True solution: u is constant along characteristic with speed $f^{\prime}(u)=u$ until the wave "breaks" (shock forms).

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Time $\mathrm{t}=0.4$

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Equal-area rule:
The area "under" the curve is conserved with time,
We must insert a shock so the two areas cut off are equal.

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Limiting solution as $\epsilon \rightarrow 0$ gives the shock-wave solution.

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Limiting solution as $\epsilon \rightarrow 0$ gives the shock-wave solution.
Why try to solve hyperbolic equation?

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Limiting solution as $\epsilon \rightarrow 0$ gives the shock-wave solution.
Why try to solve hyperbolic equation?

- Solving parabolic equation requires implicit method,
- Often correct value of physical "viscosity" is very small, shock profile that cannot be resolved on the desired grid \Longrightarrow smoothness of exact solution doesn't help!

