Conservation Laws and Finite Volume Methods

AMath 574
Winter Quarter, 2017
Randall J. LeVeque Applied Mathematics
University of Washington

January 4, 2017
http://faculty.washington.edu/rj//classes/am574w2017

Course outline

Main goals:

- Theory of hyperbolic PDEs in one dimension
- Scalar equations and systems of equations,
- Linear and nonlinear equations,
- Conservation laws and non-conservative PDEs
- Finite volume methods in 1 and 2 dimensions
- Godunov's method (upwind)
- High-resolution extensions (limiters)
- Some applications: advection, acoustics, Burgers', shallow water equations, gas dynamics, traffic flow
- Use of the Clawpack software: www.clawpack.org

See: http://faculty.washington.edu/rjl/classes/am574w2017

Outline

Today:

- Hyperbolic PDEs
- Derivation of conservation laws
- Advection
- Riemann problem
- Discontinuous solutions
- Diffusion

Reading: Chapters 1 and 2 of [FVMHP]
See also: Chapters 1 and 2 of [ETH] (available on Canvas page)

First order hyperbolic PDE in 1 space dimension

Linear: $\quad q_{t}+A q_{x}=0, \quad q(x, t) \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times m}$

Conservation law: $\quad q_{t}+f(q)_{x}=0, \quad f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ (flux)

Quasilinear form: $q_{t}+f^{\prime}(q) q_{x}=0$

Hyperbolic if A or $f^{\prime}(q)$ is diagonalizable with real eigenvalues.

Models wave motion or advective transport.
Eigenvalues are wave speeds.
Note: Second order wave equation $p_{t t}=c^{2} p_{x x}$ can be written as a first-order system (acoustics).

Derivation of Conservation Laws

$q(x, t)=$ density function for some conserved quantity, so

$$
\int_{x_{1}}^{x_{2}} q(x, t) d x=\text { total mass in interval }
$$

changes only because of fluxes at left or right of interval.

Derivation of Conservation Laws

$q(x, t)=$ density function for some conserved quantity. Integral form:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=F_{1}(t)-F_{2}(t)
$$

where

$$
F_{j}=f\left(q\left(x_{j}, t\right)\right), \quad f(q)=\text { flux function. }
$$

Derivation of Conservation Laws

If q is smooth enough, we can rewrite

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=f\left(q\left(x_{1}, t\right)\right)-f\left(q\left(x_{2}, t\right)\right)
$$

as

$$
\int_{x_{1}}^{x_{2}} q_{t} d x=-\int_{x_{1}}^{x_{2}} f(q)_{x} d x
$$

or

$$
\int_{x_{1}}^{x_{2}}\left(q_{t}+f(q)_{x}\right) d x=0
$$

True for all $x_{1}, x_{2} \Longrightarrow$ differential form:

$$
q_{t}+f(q)_{x}=0
$$

Finite differences vs. finite volumes

Finite difference Methods

- Pointwise values $Q_{i}^{n} \approx q\left(x_{i}, t_{n}\right)$
- Approximate derivatives by finite differences
- Assumes smoothness

Finite volume Methods

- Approximate cell averages: $Q_{i}^{n} \approx \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} q\left(x, t_{n}\right) d x$
- Integral form of conservation law,

$$
\frac{\partial}{\partial t} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} q(x, t) d x=f\left(q\left(x_{i-1 / 2}, t\right)\right)-f\left(q\left(x_{i+1 / 2}, t\right)\right)
$$

leads to conservation law $q_{t}+f_{x}=0$ but also directly to numerical method.

Advection equation

Flow in a pipe at constant velocity
$u=$ constant flow velocity
$q(x, t)=$ tracer concentration, $\quad f(q)=u q$

$$
\Longrightarrow \quad q_{t}+u q_{x}=0 .
$$

True solution: $q(x, t)=q(x-u t, 0)$

Advection equation

Flow in a pipe at constant velocity
$u=$ constant flow velocity
$q(x, t)=$ tracer concentration, $\quad f(q)=u q$
$\Longrightarrow \quad q_{t}+u q_{x}=0$.
True solution: $q(x, t)=q(x-u t, 0)$

Advection equation

Flow in a pipe at constant velocity
$u=$ constant flow velocity
$q(x, t)=$ tracer concentration,$\quad f(q)=u q$
$\Longrightarrow \quad q_{t}+u q_{x}=0$.
True solution: $q(x, t)=q(x-u t, 0)$

Characteristics for advection

$q(x, t)=\eta(x-u t) \Longrightarrow q$ is constant along lines

$$
X(t)=x_{0}+u t, \quad t \geq 0
$$

Can also see that q is constant along $X(t)$ from:

$$
\begin{aligned}
\frac{d}{d t} q(X(t), t) & =q_{x}(X(t), t) X^{\prime}(t)+q_{t}(X(t), t) \\
& =q_{x}(X(t), t) u+q_{t}(X(t), t) \\
& =0
\end{aligned}
$$

In $x-t$ plane:

Cauchy problem for advection

Advection equation on infinite 1D domain:

$$
q_{t}+u q_{x}=0 \quad-\infty<x<\infty, \quad t \geq 0
$$

with initial data

$$
q(x, 0)=\eta(x) \quad-\infty<x<\infty
$$

Solution:

$$
q(x, t)=\eta(x-u t) \quad-\infty<x<\infty, \quad t \geq 0
$$

Initial-boundary value problem (IBVP) for advection

Advection equation on finite 1D domain:

$$
q_{t}+u q_{x}=0 \quad a<x<b, \quad t \geq 0
$$

with initial data

$$
q(x, 0)=\eta(x) \quad a<x<b .
$$

and boundary data at the inflow boundary:
If $u>0$, need data at $x=a$:

$$
q(a, t)=g(t), \quad t \geq 0
$$

If $u<0$, need data at $x=b$:

$$
q(b, t)=g(t), \quad t \geq 0
$$

Characteristics for IBVP

In $x-t$ plane for the case $u>0$:

Solution:

$$
q(x, t)= \begin{cases}\eta(x-u t) & \text { if } a \leq x-u t \leq b \\ g((x-a) / u) & \text { otherwise }\end{cases}
$$

Periodic boundary conditions

$q(a, t)=q(b, t), \quad t \geq 0$.
In $x-t$ plane for the case $u>0$:

Solution:

$$
q(x, t)=\eta\left(X_{0}(x, t)\right)
$$

where $X_{0}(x, t)=a+\bmod (x-u t-a, b-a)$.

