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Course outline

Main goals:

e Theory of hyperbolic PDEs in one dimension
e Scalar equations and systems of equations,
e Linear and nonlinear equations,
e Conservation laws and non-conservative PDEs

e Finite volume methods in 1 and 2 dimensions

e Godunov’s method (upwind)
e High-resolution extensions (limiters)

e Some applications: advection, acoustics, Burgers’, shallow
water equations, gas dynamics, traffic flow

e Use of the Clawpack software: www.clawpack.org

See: http://faculty.washington.edu/rjl/classes/am574w2017
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Outline

Today:

e Hyperbolic PDEs
Derivation of conservation laws
Advection
Riemann problem
Discontinuous solutions

Diffusion

Reading: Chapters 1 and 2 of [FVMHP]

See also: Chapters 1 and 2 of [ETH]
(available on Canvas page)
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First order hyperbolic PDE in 1 space dimension

Linear: ¢ + Agy =0, qg(z,t) € R™, A € R™*™
Conservation law: ¢ + f(q). =0, f:R™ — IR™ (flux)
Quasilinear form: ¢ + f'(¢)gz =0

Hyperbolic if A or f’(q) is diagonalizable with real eigenvalues.

Models wave motion or advective transport.
Eigenvalues are wave speeds.

Note: Second order wave equation p;; = c?p,, can be written
as a first-order system (acoustics).
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Derivation of Conservation Laws

q(z,t) = density function for some conserved quantity, so

€2
/ q(z,t) dx = total mass in interval

Z1

changes only because of fluxes at left or right of interval.
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Derivation of Conservation Laws

q(z,t) = density function for some conserved quantity.

Integral form:

2

% q(z,t)dx = Fi(t) — Fa(t)

where
Fj = f(q(z,1)), f(q) = flux function.
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Derivation of Conservation Laws

If ¢ is smooth enough, we can rewrite

d [

- | al@t)dr = fla(@,t) = fla(@s,1))

T2 2
/ qtdmz—/ £(q) da
Tl 1

[k faae=o

1

as

or

True for all 1, xzo = differential form:

Qt+f(Q)x =0.
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Finite differences vs. finite volumes

Finite difference Methods

¢ Pointwise values Q} ~ ¢(x;,t,)
e Approximate derivatives by finite differences
e Assumes smoothness

Finite volume Methods

. 1 Tit1/2
o Approximate cell averages: Q' ~ A/ q(x,t,) dz
x Ti—1/2

e Integral form of conservation law,

0 Tit1/2

q(z,t)dx = flq(zi—1/2,1)) — fa@(Tig1/2:1))

leads to conservation law ¢; + f, = 0 but also directly to
numerical method.
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Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

q(x,t) = tracer concentration, f(q) = ugq
=  qt +uge, =0.

True solution: ¢(x,t) = q(z — ut,0)
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Characteristics for advection
q(z,t) = n(x —ut) = qis constant along lines
X(t) =x0+ut, t>0.

Can also see that ¢ is constant along X (¢) from:

Sa(X(0,0) = (X (0,05 () + (X (0,1
= qz(X (1), )u + q(X (1), 1)
=0.
In x—t plane:

7
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Cauchy problem for advection

Advection equation on infinite 1D domain:
gt +uge =0 —oco<zr<oo, t>0,
with initial data

q(z,0) = n(zx) —00 < < o0.

Solution:

q(z,t) = n(x — ut) —oo<xz<oo, t>0.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.1]



Initial-boundary value problem (IBVP) for advection

Advection equation on finite 1D domain:
qt +uq; =0 a<z<b t>0,
with initial data
q(x,0) = n(x) a<x<b.

and boundary data at the inflow boundary:
If w > 0, need data at =z = a:

q(a,t) = g(t), =0,
If w < 0, need data at x = b:

q(b,t) =g(t), t=0,
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Characteristics for IBVP

In x—t plane for the case u > 0:

.

Solution:

_ ) n(z —ut) if a<z—ut<b,
ale,t) = { g((x —a)/u)  otherwise .
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Periodic boundary conditions

q(a,t) = q(bt),  t=>0.

In x—t plane for the case u > 0:

M

Solution:
Q(x’ t) = U(XO(% t))v
where Xy(z,t) = a + mod(z — ut — a, b — a).
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