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Course outline

Main goals:

• Theory of hyperbolic PDEs in one dimension
• Scalar equations and systems of equations,
• Linear and nonlinear equations,
• Conservation laws and non-conservative PDEs

• Finite volume methods in 1 and 2 dimensions
• Godunov’s method (upwind)
• High-resolution extensions (limiters)

• Some applications: advection, acoustics, Burgers’, shallow
water equations, gas dynamics, traffic flow

• Use of the Clawpack software: www.clawpack.org

See: http://faculty.washington.edu/rjl/classes/am574w2017
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Outline

Today:
• Hyperbolic PDEs
• Derivation of conservation laws
• Advection
• Riemann problem
• Discontinuous solutions
• Diffusion

Reading: Chapters 1 and 2 of [FVMHP]

See also: Chapters 1 and 2 of [ETH]
(available on Canvas page)
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http://faculty.washington.edu/rjl/book.html
http://link.springer.com/book/10.1007/978-3-0348-5116-9


First order hyperbolic PDE in 1 space dimension

Linear: qt +Aqx = 0, q(x, t) ∈ lRm, A ∈ lRm×m

Conservation law: qt + f(q)x = 0, f : lRm → lRm (flux)

Quasilinear form: qt + f ′(q)qx = 0

Hyperbolic if A or f ′(q) is diagonalizable with real eigenvalues.

Models wave motion or advective transport.

Eigenvalues are wave speeds.

Note: Second order wave equation ptt = c2pxx can be written
as a first-order system (acoustics).
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Derivation of Conservation Laws

q(x, t) = density function for some conserved quantity, so

∫ x2

x1

q(x, t) dx = total mass in interval

changes only because of fluxes at left or right of interval.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Chap. 2]



Derivation of Conservation Laws

q(x, t) = density function for some conserved quantity.

Integral form:

d

dt

∫ x2

x1

q(x, t) dx = F1(t)− F2(t)

where
Fj = f(q(xj , t)), f(q) = flux function.
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Derivation of Conservation Laws

If q is smooth enough, we can rewrite

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t))

as ∫ x2

x1

qt dx = −
∫ x2

x1

f(q)x dx

or ∫ x2

x1

(qt + f(q)x) dx = 0

True for all x1, x2 =⇒ differential form:

qt + f(q)x = 0.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Chap. 2]



Finite differences vs. finite volumes

Finite difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite volume Methods

• Approximate cell averages: Qn
i ≈

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [ FVMHP Chap. 4]



Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

q(x, t) = tracer concentration, f(q) = uq

=⇒ qt + uqx = 0.

True solution: q(x, t) = q(x− ut, 0)

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.1]
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Characteristics for advection

q(x, t) = η(x− ut) =⇒ q is constant along lines

X(t) = x0 + ut, t ≥ 0.

Can also see that q is constant along X(t) from:

d

dt
q(X(t), t) = qx(X(t), t)X ′(t) + qt(X(t), t)

= qx(X(t), t)u+ qt(X(t), t)

= 0.

In x–t plane:
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Cauchy problem for advection

Advection equation on infinite 1D domain:

qt + uqx = 0 −∞ < x <∞, t ≥ 0,

with initial data

q(x, 0) = η(x) −∞ < x <∞.

Solution:

q(x, t) = η(x− ut) −∞ < x <∞, t ≥ 0.

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.1]



Initial–boundary value problem (IBVP) for advection

Advection equation on finite 1D domain:

qt + uqx = 0 a < x < b, t ≥ 0,

with initial data

q(x, 0) = η(x) a < x < b.

and boundary data at the inflow boundary:

If u > 0, need data at x = a:

q(a, t) = g(t), t ≥ 0,

If u < 0, need data at x = b:

q(b, t) = g(t), t ≥ 0,

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 2.1]



Characteristics for IBVP

In x–t plane for the case u > 0:

Solution:

q(x, t) =

{
η(x− ut) if a ≤ x− ut ≤ b,
g((x− a)/u) otherwise .
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Periodic boundary conditions

q(a, t) = q(b, t), t ≥ 0.

In x–t plane for the case u > 0:

Solution:
q(x, t) = η(X0(x, t)),

where X0(x, t) = a+ mod(x− ut− a, b− a).
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