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[1] The conventional view of microwave backscatter from the ocean is based on composite
surface and quasi-specular theories. In this view, backscatter at intermediate incidence
angles is due to Bragg scattering from freely propagating short surface waves that are
advected and modulated by longer waves. At small incidence angles the scattering process
becomes quasi-specular, coming from small facets aligned normal to the incident waves.
The transition between these two processes is said to occur at incidence angles of about 10�
to 20�. In this paper we demonstrate that advances in scattering theory and in computing
speedmake it possible to improve this view.We show that recent scattering theories agree on
the form of the backscatter for incidence angles below that where multiple scatteringmust be
considered, i.e., below about 80�. This form involves the Kirchhoff integral multiplied by a
coefficient dependent on dielectric constant and incidence angle. We avoid the higher-order
calculations necessary in these theories to include the variable local incidence angle caused
by surface wave slopes by applying them over restricted regions of the surface. We
successively break the surface into regions from which the scatter comes from small-,
intermediate-, and large-scale waves. We show that in this picture, scattering from small-
scale waves is classic Bragg scattering and is very common while from large-scale waves it
is classic quasi-specular scattering and is rarely important. For intermediate-scale waves we
evaluate the Kirchhoff integral numerically; this type of scattering becomes increasingly
important with increasing wind speed. For all scales but the large one we correct the
incidence angle for the slopes of all longer waves as required by composite surface theory.
On this picture the transition from Bragg scattering to Kirchhoff scattering occurs gradually
in a manner that is dependent on incidence angle, azimuth angle, wind speed, and the surface
wave spectrum. The model indicates that Bragg scattering is often viable to surprisingly low
incidence angles at low wind speeds. The model is sensitive to the wave height variance
spectrum over a wide range of wave numbers. We use two recently published forms of this
spectrum to compare the predictions of the model to various data that have been collected
over the incidence angles range from 0� to 50�. At 0� this model produces a better fit to Ku
band data from the TOPEX altimeter than does quasi-specular theory and does so with no
artificial ‘‘effective reflection coefficient.’’ As the incidence angle increases, the model
continues to show good agreement with data without an artificial division into ‘‘quasi-
specular’’ and ‘‘Bragg’’ scattering. The advantage of this formulation over a quasi-specular
one is demonstrated by comparing the two models with data on received power taken at 36
GHz for incidence angles between nadir and 30�. INDEX TERMS: 4275 Oceanography: General:

Remote sensing and electromagnetic processes (0689); 4560 Oceanography: Physical: Surface waves and tides
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1. Introduction

[2] Past attempts to develop a physical model of micro-
wave backscatter from the ocean surface have relied on

Bragg scattering, composite surface, and quasi-specular
scattering theories [Wright, 1966, 1968; Bass et al., 1968;
Barrick, 1968; Valenzuela, 1978; Durden and Vesecky,
1985; Plant, 1986; Donelan and Pierson, 1987; Apel,
1994; Romeiser et al., 1997; Plant, 1997]. Many advances
have been made in recent years, however, in theories of
microwave scattering from rough water surfaces [Holliday,
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1987; Fung et al., 1992; Voronovich, 1985, 1994; Thorsos
and Broschat, 1995]. These investigations clearly indicate
that microwave backscatter from the ocean can more gen-
erally be described in terms of a Kirchhoff integral multi-
plied by a coefficient depending on incidence angle and
dielectric constant. These results are similar to those used
heuristically as a starting point by Apel [1994]. In his paper,
however, Apel applied only the quasi-specular and Bragg
scattering approximations to obtain his results from this
starting point. Composite surface theory was not used by
Apel since he did not consider tilting, modulation, and
advection of the Bragg scatterers. All of the other attempts
to physically describe microwave backscatter from the
ocean have used Bragg scattering in combination with
composite surface concepts, augmented by quasi-specular
scattering at low angles. However, the effects of the long
waves on the shorter ones have generally been included by
integrating cross sections due to local Bragg scattering over
the probability distribution of the long waves or by expand-
ing in powers of the slope of the long wave. The recent
theoretical advances when coupled with the speed of
modern computers now make it possible to pursue another
approach to this scattering problem. Individual realizations
of the ocean surface can be obtained from one of the several
forms of the surface wave height spectrum that have been
suggested recently [Donelan et al., 1985; Plant, 1986;
Banner, 1990; Elfouhaily et al., 1997]. Kirchhoff integral
scattering can then be applied locally to backscatter from
individual facets. Mean backscattering cross sections can be
obtained by averaging those produced by the individual
facets of the stochastically rough, long wave surface. This
approach will be developed in this paper. The results will
provide a method of calculating normalized radar cross
sections of the sea over a range of incidence angles from
nadir out to intermediate angles using a single method. This
model will show that the Kirchhoff integral can be accu-
rately approximated by Bragg scattering in many cases and
will produce an estimate of the fraction of the total back-
scatter that can be described as Bragg scattering as a
function of incidence angle and wind speed. Two different
forms for the surface wave spectrum will be considered. We
will leave to future work a description of the Doppler
characteristics of the backscatter and of the nature of the
return at high incidence angles where bound, tilted waves
are important [Plant, 1997; Plant et al., 1999a].

2. Overview

[3] The starting point of this model is a Kirchhoff integral
formulation of backscatter similar to the one used by Apel
[1994]. In the appendix, we show that both the Integral
Expansion Method of Fung et al. [1992] and the small slope
approximation of Voronovich [1994] yield the same expres-
sion for the normalized radar cross section of the sea for
backscatter in terms of the Kirchhoff integral, although this
expression is slightly different than the one postulated by
Apel. We will divide the equation into parts corresponding to
large, intermediate, and small wave heights, applying the
expression to the latter two scales only over small facets of
the surface. We believe that this is a better approach to
applying the Kirchhoff formulation than applying it over all
length scales on the ocean surface because the derivation of

the formulation assumes stationarity and homogeneity, prop-
erties that the ocean surface does not have over a wide range
of length scales. Recent studies have shown that the local
incidence angle at a facet must be used to obtain correct
scattering results [Plant et al., 1999b]. Therefore, in applying
this division of scales, we will let the local angle of incidence
be determined by the nominal incidence angle and the slopes
of all larger scales. By investigating backscatter from inter-
mediate and small waves as functions of position on the large
waves, we will be able to obtain the geometric (tilting) parts
of modulation transfer functions. Hydrodynamic parts will
be added separately by modulating the mean spectra of short
and intermediate waves by the slopes of longer waves using
our present understanding of modulation transfer functions.
Furthermore, averaging the backscatter from large, inter-
mediate and small-scale waves over many realizations of the
long waves will yield average cross sections. For cases where
the high frequency limit applies, these results should be
comparable to quasi-specular theory; we will check this.
[4] Large wave heights correspond to long waves and we

will artificially pick a cutoff wave number below which the
waves will be considered large. From the spectrum in this
low-wave number region, we will obtain realizations of the
slopes of the large-scale surface for use in the small and
intermediate scale calculations. The size of the large-scale
facets over which this slope is held constant will be
determined by the wavelength of the shortest wave that is
considered to be large. Backscattering from these long
waves will be approximated by quasi-specular scattering
since its computation is faster than evaluating the Kirchhoff
integral numerically. We will show that these long waves
rarely contribute a significant amount of backscatter.
[5] We will depart a bit from the standard composite

surface approach by considering an intermediate scale of
surface waves whose lengths lie between those of long and
short waves. We will determine the lengths of these waves
based on the value of kos cos q, the product of the vertical
wave number of the incident radiation times the RMS height
of the surface. Intermediate wave heights will have inter-
mediate values of this parameter and correspond to inter-
mediate wave numbers. The Kirchhoff integral cannot be
accurately approximated for these wave heights so we will
solved the Kirchhoff integral numerically on each large-scale
facet for which the Bragg wave number, 2ko sin q

0, where q0 is
the local incidence angle, lies in the intermediate-scale
range. Intermediate-scale backscatter will not come from
large-scale facets that do not satisfy this condition; these are
the facets that contribute to the stationary phase solution for
the large scale that leads to quasi-specular scattering. In
addition to adjusting the local incidence angle to allow for
the local tilt of each large scale facet, we will allow the
longer waves to modulate the mean intermediate-scale wave
spectrum. Using the modulated spectra from this wave
number range along with the large-scale slopes already
calculated, we will then obtain realizations of slopes for
use in the small-scale calculations. The size of these inter-
mediate-scale facets will be determined by the wavelength of
the smallest wave considered to be intermediate scale.
[6] Small wave heights correspond to high wave numbers

and small values of kos cos q. The scattering theory reduces
to Bragg scattering here. However, since the slopes of both
the large and (modulated) intermediate scale waves are used
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in these calculations to change the local incidence angle of
the Bragg scatterers, composite surface theory is obtained.
Thus Bragg scattering is calculated from each intermediate-
scale facet that is tilted by an amount that allows the Bragg
wave number for the facet based on the local incidence angle
to lie in the small-scale wave number range. Again no small-
scale scatter comes from improperly oriented intermediate-
scale facets.
[7] A. G. Voronovich (personal communication, 2000)

has recently shown that results similar to this approach can
be obtained by applying the Small Slope Approximation to
second order. We believe that this technique would be
difficult in general, however, and would obscure the physics
of the processes affecting the backscatter. Additional justi-
fication for using local angles of incidence in our inter-
mediate and small-scale wave calculations to take into
account tilting by larger waves is also provided by work
of Voronovich. His small-slope approximation for rough-
surface scattering yields the scattered field when surface
wave heights are input [Voronovich, 1994]. By separating
these wave heights into large and small-scale parts, he has
shown that composite surface theory, in which the local
incidence angle varies with his large-scale slopes, can be
obtained from his Small Slope Approximation for the
scattering from the small-scale waves [Voronovich, 1996].
[8] A schematic of the approach being used here is given

in Figure 1, which shows the division into large, intermedi-
ate, and small scales and the types of scattering coming
from each. Scattering cross sections will be calculated as
individual realizations of the cross sections of large, inter-

mediate, and small scale waves. Averaging over many
realizations of these cross section will produce total mean
backscattering cross sections. We will only calculate like
polarized cross sections in this paper.
[9] We mention in passing that if an infinite dielectric

constant is used and no cross-slope admixture of VV return
(see Section 3) is allowed, then the model developed here
can also be applied to acoustic scattering from the sea
surface. Acoustic scattering will be identical to HH polar-
ized microwave scattering in this case.

3. Modeling Approach

[10] We show in Appendix A that both the Integral
Expansion Method of Fung et al. [1992] and the Small-
Slope Approximation of Voronovich [1994] yield the fol-
lowing equation for the normalized radar cross section of
the sea for backscatter:

soqp ¼
k2o

p cos2 q
jgqp j2e�4k2o cos

2 qs2
Z

e4k
2
o cos

2 qs2 rðx;zÞ � 1
� �

�e�i2ko sin qxdxdz ð1Þ

where x and z are lag distances in and perpendicular to the
plane of incidence, ko is the microwave number, q is the
incidence angle, q and p indicate polarization, and gqp is
given by

gvv ¼
ð�� 1Þ½�ð1þ sin2 qÞ � sin2 q
 cos2 q

� cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2 ð2Þ

Figure 1. Schematic of the scattering model used in this paper.
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for VV polarization and

ghh ¼
ð�� 1Þ cos2 q

cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2 ð3Þ

where � is the relative dielectric constant. If the statistics are
Gaussian, s2 is mean square surface wave height and r is
the autocorrelation function of surface height. The ‘‘1’’ in
the kernel of equation (1) removes the coherent part of the
scattering. We add this part back into the equation for the
remainder of this paper. We refer to the integral in equation
(1) (with the ‘‘1’’ removed) as the Kirchhoff integral for
historic reasons [Beckmann and Spizzichino, 1963]. We note
that, while the Integral Expansion Method agrees with the
Small-Slope Approximation in the case of backscatter, this
has been shown not to be true for the more general bistatic
case. In this case, the Integral Expansion Method does not
reduce to small perturbation theory in the slightly rough
surface approximation while the Small-Slope Approxima-
tion does [Elfouhaily et al., 2001a].
[11] Equation (1) was derived under the assumptions that

the surface waves were homogeneous and stationary,
assumptions that are not valid for the sea surface on small
time and space scales and are only marginally valid on
intermediate scales if the longer waves are not held con-
stant. To handle the inhomogeneous and nonstationary
nature of the sea surface, we partition it into large, inter-
mediate, and small scale waves and treat the larger scales
deterministically in averages over smaller scales. Thus
large-scale wave properties are kept constant in ensemble
averages over intermediate and small-scale waves while
large and intermediate-scale waves are held constant in
ensemble averages over short waves. We assume that these
filtered surfaces, large, intermediate, and small, each exhibit
Gaussian statistics. If we make this partition of surface
displacements into different scales and assume that they are
phase decorrelated, we have

s2r ¼ s2l rl þ s2i ri þ s2s rs ð4Þ

where the subscripts indicate large, intermediate, and small
scales.
[12] Now consider the portion of the integral in equation

(1) that covers small values of x and z. Over this range, rl
and ri are nearly one so that factors containing them may be
taken out of the integral to yield,

sos ¼
k2o jg0qp j2

p cos2 q0

Z s

�s

e4k
2
0
cos2 q0s2s ðrsðx;zÞ�1Þe�i2ko sin q0sxdxdz: ð5Þ

where the limits of integration correspond to the largest
values of |x| and |z| that we consider to be small.
[13] In equation (5), we have evaluated the cross section

on a plane tilted because of the long and intermediate waves
and have thus substituted q0 for q where

q0 ¼ q� gl � gi ð6Þ

and gl and gi are the arctangents of the slopes of the long
and intermediate waves in the plane of incidence. We also

have added a prime to gqp to indicate that long wave tilts out
of the plane of incidence mix HH and VV polarizations
[Valenzuela, 1968; Plant, 1990]. Thus we have

g0vv¼
:
gvvðq0Þ ð7Þ

while

g0hh¼
:
cos2 f0ghhðq0Þ þ sin2 f0gvvðq0Þ ð8Þ

where

f0 ¼ tan �1 al þ ai

q0

� �
: ð9Þ

and al and ai are the arctangents of the slope of the long and
intermediate waves perpendicular to the plane of incidence.
Note that the tilt of the plane of incidence also means that rs
is evaluated in a tilted reference frame.
[14] For these small-scale waves, the exponent containing

the autocorrelation function in equation (5) is a small
quantity and we may expand the exponential to yield,

e4k
2
0
cos2 q0s2s ðrs�1Þ¼: 1þ 4k2o cos

2 q0s2s ðrs � 1Þ: ð10Þ

The spatially constant terms in this expression yield terms
when substituted into equation (5) that are zero at small-
scale wave numbers and therefore do not contribute to
small-scale scattering. Substituting the other term into
equation (5) and extending the limits of integration to
infinity because rs is negligible beyond these limit, we get

sos ¼ 16pk4o jg0qp j
2 ½Fsð2ko sin q0s; 0Þ þ Fsð�2ko sin q0s; 0Þ
 ð11Þ

where Fs(kx, ky) is the one-sided, short wave spectrum
defined such that its integral over all (kx, ky) is ss

2. The ‘‘x’’
subscripts refer to the axis in the plane of incidence while
‘‘y’’ indicates the perpendicular axis. Evaluating this
equation for many realizations of large and intermediate-
scale facets and averaging yields the composite surface
theory result for the mean cross section due to small-scale
waves.
[15] Turning now to the range of the integral in equation

(1) corresponding to intermediate scales, we note that the
short waves are well decorrelated on these scales so that
rs = 0. Furthermore, these scales are small enough so that
we may let rl = 1. Then, equation (1) reads for the interme-
diate scales,

soi ¼
k2o jg0qp j2

p cos2 q0
e�4k2o cos

2 q0s2s

Z i

�i

e4k
2
o cos

2 q0s2i ðriðx;z;tÞ�1Þe�i2ko sin q0xdxdz

ð12Þ

where the integral is over all scales considered to be
intermediate but excluding the small scales. q0 and g0qp are
the same as their small-scale counterparts except that ai and
gi are now omitted from equations (6) and (9). Since in this
region, we cannot approximate the integral in equation (12)
we will integrate it numerically. Then averaging over many
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realizations of large-scale facets yields the mean cross
section due to intermediate-scale waves.
[16] For the large-scale part of the cross section, we may

make the standard high-frequency assumptions to solve
equation (1). Thus we note that in the large-scale range of
x and z, ri and rs are nearly zero so equation (1) can be
written,

sol ¼
k2o jgqp j2
p cos2 q

e�4k2o cos
2 qðs2i þs2s Þ

Z 1

�1
e4k

2
o cos

2 qs2
l
ðrlðx;zÞ�1Þ

�e�i2ko sin qxdxdz ð13Þ

We exclude the intermediate and smaller scales from this
integral. In practice neither this omission nor the exclusion
of small scales in equation (12) causes any real problem.
Below, we will break the total spectrum of surface waves
into parts corresponding to small, intermediate, and large
scales. For each region the spectrum will be set to zero
outside of some wave number range. Therefore, the
correlation functions, which are digital Fourier transforms
of the spectra will have a spatial resolution set by the
inverse of the highest wave number included in the
spectrum. This means that long wave correlation functions
will contain no information on intermediate scales, and
intermediate wave correlation functions will contain no
information on small scales. The omitted parts of the
integrals are subresolution.
[17] Ignoring, then, the part of the integration range that

was omitted and following standard procedures of ensemble
averaging and applying the Kirchhoff approximation [Ulaby
et al., 1982], it is straightforward to evaluate equation (13)
to obtain

sol ¼ e�4k2o cos
2 qðs2i þs2s Þ

� jRð0Þj2 sec4q
2ðSxxSzz � S2xzÞ

1=2

 !
e

�
tan2 qðSzz sin

2 fþSxx cos
2 f�2Sxz cosf sinfÞ

2ðSxxSzz�S2
xz

Þ

� �
ð14Þ

where Sij is the ensemble average of the product of large-
scale slopes in the i and j directions. Without the leading
exponential factor, this is the standard quasi-specular result
[Barrick, 1968; Hesany et al., 2000]. The large-scale cross
section, sol is easily shown to be a very small number for
microwave frequencies and reasonable values of ss

2 and si
2;

we will give examples in section 6. Thus, in most cases the
large-scale waves do not directly backscatter, exceptions
being cases where the surface is nearly flat and the
incidence angle is nearly zero.
[18] The two derivations of equation (1) used in Appen-

dix A both implicitly assume that the antenna pattern is
constant over decorrelation lengths on the surface. For
intermediate waves, this is a very good assumption. It is
possible, however, for our large scale surface to be perfectly
flat. In this case the limits of integration in equation (13)
will be determined by a windowing function caused by the
antenna pattern that should really be included under the
integral. Thus, the result in equation (14) should really be
convolved with the Fourier transform this windowing
function. This matters little, however, unless the surface is
virtually flat and for that case, the value of sol can be
determined by a simple image method given in Appendix B.

The result given implies that when the large-scale surface is
flat but small and intermediate waves exist on the surface,
sol is approximately given by

sol ¼ e�4k2o cos
2 qðs2i þs2i Þ

8 jRð0Þj2

�2
1

� �
e�8ð ln 2Þq2=�2

1 ð15Þ

where R(0) is the (HH or VV) reflection coefficient at nadir
and �1 is the one-way, full, half-power antenna beam width.
Thus the magnitude of sol in this case depends on details of
the antenna. This result can also be derived more tediously
from equation (13) with a proper windowing function. As
we will show below, this limit seldom gives appreciable
backscatter except when small and intermediate waves are
tiny and when the incidence angle is very nearly zero.
[19] In evaluating the overall mean cross section from the

above equations, it is important to realize that because we
used local incidence angles in equations (5) and (12), the
integrals will be zero if 2 kosin q

0 falls outside of the small or
intermediate scale wave number range, respectively. This
means that if Al is the total area, which is large in
dimensions compared to the largest waves on the surface,
then only in a part of this area Ai < Al will the large-scale
facets that contain the intermediate-scale waves be oriented
so that these waves backscatter. Similarly, for small-scale
facets only a part As < Al of the total surface area will
contribute to backscatter by small-scale waves. Thus the
overall mean cross section is given by

so ¼ sol þ
Ai

Al

� �
�Nl

j¼1s
j
oi þ

As

Al

� �
�Ni

j¼1s
j
os ð16Þ

where Nl and Ni are the number of large and intermediate-
scale facets within the area Al that have the proper
orientations and the superscript ‘‘j’’ indicates the cross
section of the jth facet. In cases where small-scale scattering
is negligible, that is, where Ni is very small, we expect our
result to be close to that given by quasi-specular theory.
This agreement will depend on the accuracy of the
stationary phase approximation invoked by quasi-specular
theory to evaluate the integral in equation (12). In equation
(16), sol, soi

j , and sos
j are all ensemble-averaged cross

sections with larger scales held constant.
[20] We do not expect our results to be valid at very high

incidence angles due to our neglect of multiple scattering
and the probable dependence of so on the exact surface
morphology in this region. Thus we estimate the range of
validity of the present model to be from incidence angles of
0� to about 80�. However, bound, tilted waves are known
to contribute to the backscatter above about 50� [Plant,
1997]. At this time, the spectral form of these bound waves
has not been determined, especially its angular spreading
function. Thus such waves will not be included in the
spectra to be discussed in the next section. For this reason,
we will apply our model only out to incidence angles of
50� in this paper.
[21] In order to evaluate the equations given in this

section, we need mean square heights and autocorrelation
functions of the three different scales of waves along with
slopes of intermediate and large-scale waves. We will obtain
these quantities from forms of the mean ocean wave height
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variance spectrum that have been developed by various
workers in recent years. In the following section, we discuss
these spectra.

4. Wave spectrum

[22] Evaluation of the wave height variance spectrum
over the wide range of wave numbers required for this
calculation is very difficult. This range will necessarily run
from millimeter wavelengths to wavelengths on the order of
300 meters. No single technique is able to determine wave
height variance spectral densities over the entire range due
to resolution and dynamic range limitations. However, in
recent years, several papers have been published which
evaluate the required variance spectrum in various ranges
using the results of measurements with wave gauge arrays,
stereo photography, and microwave backscatter [Donelan
et al., 1985, hereinafter referred to as DHH; Plant, 1986;
Banner, 1990]. We will utilize these results to obtain a form
for the mean wave height variance spectrum over the
required wide range of wave numbers. This will be the first
spectral form we will consider in this paper. In addition to
this, we will utilize the results of Elfouhaily et al. [1997] in
our model. They have also attempted to synthesize the
above results, and others, into a single, consistent form
for the wave height variance spectrum over the whole range
of wavelengths relevant on the ocean.

4.1. D Spectrum

[23] First let us consider the synthesis of DHH, Banner,
and Plant into a single spectral form, which we will call the
D spectrum. The appropriate form for the spectrum as a
function of wave number and direction is a product of a
wave number-dependent function and an angular spreading
function. This is given by

Fðk;fÞ ¼ Fðk; 0ÞDðk;fÞ ð17Þ

where k is the wave number magnitude, and f is its angle
with respect to the direction toward which the wind blows,
assumed to be f = 0. We will use the form for D(k, f)
obtained by DHH in their measurements of directional
spectra on Lake Ontario using a wave gauge array. This
form is given by

Dðk;fÞ ¼ sech2ðBfÞ ð18Þ

It is convenient to divide up the total wave number range of
interest into that where gravity is the major restoring force,
the gravity wave range, and that where surface tension also
becomes important, the capillary wave range. In the gravity
wave range, below k = 30 rad/m, we follow DHH and let B
vary in various wave number ranges in the following
manner

Bg ¼

1:22 ; k=kp  0:31

2:61ðk=kpÞ0:65 ; 0:31 < k=kp  0:97

2:28ðk=kpÞ�0:65 ; 0:97 < k=kp  2:56

10½�0:4þ0:8393 exp ð�0:56 ln ðk=kpÞÞ
 ; 2:56 < k=kp  30=kp

8>>>>>>>><
>>>>>>>>:

where kp is the wave number at the peak spectral density in
rad/m. Its determination will be discussed below. In the
capillary wave range, above k = 100 rad/m, we take B = Bg

= 1.24 following Donelan and Pierson [1987]. Below we
will discuss the transition between the two ranges.
[24] For wave numbers near the spectral peak, we con-

verted the frequency spectrum given by DHH to wave
number using the dispersion relation for gravity waves to
obtain an expression for F(k, 0). We modified this form,
however, so that it corresponds to that given by Banner
[1990] in the wave number range just above the spectral
peak. Thus

Fgðk; 0Þ ¼
� a
k4

�
exp

n
� ðkp

k
Þ2
o
GH ð19Þ

DHH show that the parameters of this expression are
different in their wind-wave tank than in the field. The two
regimes may be differentiated on the basis of U/cp where U
is the neutral wind speed at 10 meters height and cp is the
phase speed of the wave with the maximum spectral
density.
[25] Then, given the fetch x in meters and U in m/s, all

parameters in equation (19) may be obtained as follows:

U=cp ¼ 11:6ðxg=U2Þ�0:23 ð20Þ

where g is gravitational acceleration in m/s2,

a ¼ 0:001776ðU=cpÞ0:5 ð21Þ

kp ¼ g=cp ð22Þ

G ¼

1:7 ; U=cp < 1

1:7þ 6:0 logðU=cpÞ ; 1  U=cp < 5

2:7ðU=cpÞ0:57 ; U=cp � 5

8>>>><
>>>>:

ð23Þ

H ¼ exp �ðk=kpÞ0:5 � 1Þ2

2s2

" #
ð24Þ

where

s ¼
0:08½1þ 4ðU=cpÞ�3
 ; U=cp < 5

0:16 ; U=cp � 5

8<
: ð25Þ

For U/cp < 5, these expressions correspond to those given by
DHH; above that, they provide a good fit to spectra measured
in a wind-wave tank by Plant [1980]. Following Banner, we
assume that these expressions are valid up to wave numbers
of about 30 rad/m or wavelengths of about 20 cm.
[26] Finally, for the wavelength range where capillarity is

important, Plant [1986] derived the following expression:

Fcðk; 0Þ ¼
Au2

*
c2k4

ð26Þ
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where u
*
is friction velocity and c is the phase speed of the

wave of wave number k. Plant showed that this form fit
microwave cross sections of the sea at intermediate
incidence angles for microwavelengths of 2 and 6 cm if A
was taken to be 0.002. However, if viscous dissipation is
included in the growth rate used to derive this expression, it
becomes

Fcðk; 0Þ ¼
Au2

*
c2k4

� 100Ank�3=c ð27Þ

where n is the kinematic viscosity of water. We use this
expression for wave numbers above 100 rad/m.
[27] The phase speed, c of these very short waves is

dependent on the wind speed. In order to include this effect,
we use the equations of Plant and Wright [1980]. For waves
propagating in the wind direction, these are,

c ¼ c2o �
ra
rw

ðpu�Þ2

3k
þ U2

a

 !" #1=2
þUw ð28Þ

where

c2o ¼ g=k þ Tk ð29Þ

Ua ¼ Us þ
u�
k

ln
zao þ z

zao

� �
ð30Þ

Uw ¼ Us �
ra
rw

� �1=2
u�
k

ln
zwo þ z

zwo

� �
ð31Þ

where T is the surface tension of water divided by its
density, ra and rw are the densities of air and water,
respectively, Us is the surface drift speed, zo

a and zo
w are

roughness lengths in air and water, respectively, and k is
von Karman’s constant, taken here to be 0.4. In equation
(28), Ua and Uw are evaluated at z = 0.0044 (2p)/k. Plant
and Wright showed that two different sets of assumptions
for the combination (Us, zo

w) produced nearly the same
phase speeds. These combinations are

Us ¼ 0:38u0:7
*

zwo ¼ zao

ð32Þ

and

Us ¼ 0:6u*

zwo ¼ 2:5� 10�5m:
ð33Þ

We have chosen to use the latter combination in this work.
[28] In order to evaluate u

*
and zo

a, given U, we need to
know the neutral drag coefficient, Cdn. If this is known, then

u
*
¼ U

ffiffiffiffiffiffiffi
Cdn

p
ð34Þ

and

zao ¼ 10 exp ð�k=
ffiffiffiffiffiffiffi
Cdn

p
Þ ð35Þ

Colton et al. [1995] using measurements of Donelan similar
to those reported by Donelan [1982] have shown that Cdn

depends on both x and U. Therefore, we have taken Cdn to
be given by

Cdn¼

0:001½0:8þð0:04þ 0:07ðU=cp�0:83Þ=4:17ÞU 
 ; 0:83U=cp<5

0:001½0:8þð0:04þ 0:07ðU=cp�0:83Þ=4:17ÞU 
 ; 5  U=cp < 9:17

0:001½0:8þ 0:04U 
 ; otherwise

8>>>><
>>>>:

ð36Þ

This form fits both the observations reported by Colton
et al. and wave tank observations showing that Cdn returns
to its long-fetch oceanic form at very short fetches [Keller
et al., 1992].
[29] The forms for F(k, 0) in the two different wave

number ranges, equations (19) and (26) do not come
together smoothly at most wind speeds. Therefore we have
inserted a transition region between them in the following
manner. Let

a ¼ 0:165þ 0:835 tanh½ðk � 5
ffiffiffiffi
U

p
Þ=ð25

ffiffiffiffi
U

p
Þ
 ð37Þ

Then we let the overall spectrum be defined by

Fðk; 0Þ ¼ Fgðk; 0Þð1� aÞ þ Fcðk; 0Þa ð38Þ

and in the spreading function, D, we let

B ¼ Bgð1� aÞ þ 0:84a ð39Þ

Figure 2 shows F(k, 0), k4F(k, 0), and D(k, f) computed
using this spectral form for various wind speeds and fetches
of x = 9.7 U2 km. Note that this model is very similar to that
of Apel [1994] except that he deals only with fully
developed spectra and his spectra yield upwind slopes
which exceed the limit of 0.06 proposed by Plant [1982]
while the present model does not exceed that limit up to a
wind speed of 25 m/s.

4.2. E Spectrum

[30] We turn now to the second spectral model used in
this paper, that of Elfouhaily et al. [1997] (hereinafter
referred to as ECKV). The basic approach is similar to that
employed in the D spectrum in that the full spectrum is
factored into a part dependent only on wave number and a
part dependent also on direction. Now however, the wave
number part is the integral over all directions rather than that
in the wind direction:

Fðk;fÞ ¼ SðkÞ�ðk;fÞ: ð40Þ

S(k) is given by

SðkÞ ¼ k�4½Bl þ Bh
 ð41Þ

where Bl and Bh are curvature spectra at low and high
frequencies, respectively. We use k�4 above rather than k�3

as ECKV did so that the mean squared height is obtained by
integrating F over k dk df.
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[31] The curvature spectra are given by ECKV as

Bl ¼ 0:5ap

� cp
co

�
exp

n
� 1:25

� kp
k

�2o
GH exp

n
�
Uð

ffiffiffiffiffiffiffiffiffi
k=kp

p
� 1Þ

cp
ffiffiffiffiffi
10

p
o

ð42Þ

where

ap ¼ 0:006
ffiffiffiffiffiffiffiffiffiffiffi
U=cp

q
ð43Þ

and

Bh ¼ 0:5am

� cm
co

�
exp

n
� 0:25

h� k

km

�
� 1
i2o

ð44Þ

where

am ¼ 0:014ðu
*
=cmÞ ð45Þ

and cm = 0.23 m/s is the value of co at k = km, the wave
number of minimum phase speed, neglecting airflow.
[32] We have deviated from the paper of ECKV in two

respects. First, we obtain u
*
given U by using the drag

coefficient given by equation (36). Second, we use a one-
sided spectrum rather than a two-sided one. Thus we let C
have the shape first suggested by Longuet-Higgins et al.
[1963]:

�ðk;fÞ ¼ GðsÞ cos ðf=2Þ2s: ð46Þ

For a one-sided spectrum, it is straightforward to relate s to
�(k) given by ECKV. The relationship is

s ¼ 1� ln
1��ðkÞ
1þ�ðkÞ

� �
= ln 2 ð47Þ

where

�ðkÞ ¼ tanh
n ln 2

4
þ 4
� co
cp

�2:5
þ 0:13

� u
*
cm

�� cm
co

�2:5o
: ð48Þ

G(s) is chosen so that the integral of C(k, f) over f is one
for all k.

[33] Figure 3 shows the E spectrum for various wind
speeds and fetches of 9.7 U2 km. Note that the spectrum is
given in the figure in terms of F(k, 0) and D(k, f) so that it
can be easily compared to the D spectrum.

5. Conversion of the Spectrum Into the
Required Surface Quantities

[34] Given the spectrum F(k, f), we integrate it over f to
get F(k) and then determine the minimum k2 such that

4k2o cos
2 q
Z 1

k2

FðkÞkdk  0:09: ð49Þ

This establishes the division between short and intermediate
waves. We set the wave number dividing intermediate and
large waves, k1, by finding the smallest value of k1 such that

4k2o cos
2 q
Z k2

k1

FðkÞkdk  9: ð50Þ

If k1 > k2/6, we set it to k2/6. We then define small (Fs),
intermediate (Fi), and large (Fl) scale spectra as follows:

Fsð
!
kÞ ¼ Fð!kÞ ; k2  k

Fið
!
kÞ ¼ Fð!kÞ ; k1  k < k2

Flð
!
kÞ ¼ Fð!kÞ ; 0 < k < k1:

ð51Þ

and, where confusion may occur, will indicate wave
numbers in the large, intermediate, and small-scale range
by ks, ki, and kl.
[35] In the large-scale region, we use Fl to calculate the

large-scale slope
!
Sl in and perpendicular to the plane of

incidence. Let

alð
!
kÞ ¼ eigð

!
kÞ

ffiffiffiffiffiffiffiffiffiffiffi
Flð

!
kÞ

q
=dk ð52Þ

where gð!kÞ is a random phase uniformly distributed
between 0 and 2p. Also, assume that the antenna looks

Figure 2. The D spectrum at various wind speeds and fetches of 9.7U2 km. (a) The wave height
variance spectral density in the direction of the wind. The dash-dotted line in shows k�4, while the dashed
line is k�3.5. (b) The curvature spectrum in the wind direction. (c) The angular part of the spectrum,
D(k, f). The solid lines show, in order of increasing loop size, k/kp = 1, 3, 10, and 50, while the dashed
line is k/kp = 1000.
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in the x direction, that y is the perpendicular horizontal
direction and that z is vertical. Let

!
il,

!
jl, and

!
kl be unit

vectors in the horizontal look direction, in the perpendic-
ular horizontal direction pointing left of

!
il, and in the

vertical direction pointing upwards, respectively. Then,

!
Slð

!
x; tÞ ¼

Z k1

0

cos ðf� faÞ
!
il þ sin ðf� faÞ

!
jl

h i
ikalð

!
kÞd!k ð53Þ

where fa is the horizontal antenna look direction relative
to the direction toward which the wind blows. We also
need the mean square height of the large scale waves,
given by

s2l ¼
Z k1

0

FlðkÞkdk ð54Þ

as well as various slope quantities for these waves:

Sxx ¼
R k1
0
k2 cos2ðf� faÞFlð

!
kÞd!k

Szz ¼
R k1
0
k2 sin2ðf� faÞFlð

!
kÞd!k

Sxz ¼
R k1
0
k2 sin ðf� faÞ cos ðf� faÞFlð

!
kÞd!k:

ð55Þ

[36] We must now calculate the hydrodynamic modula-
tion of the intermediate-scale waves by the large ones. Thus
the spectral density of the intermediate waves at a particular
point in space after modulation by the large-scale waves is
given by

Fimð
!
ki;

!
xÞ ¼ F1 1þ

Z k1

0

mð!ki;
!
kÞ½kað!kÞ=tanh kd
 e�

!
k�!xd

!
k

� �
: ð56Þ

[37] We use the expression of Hara and Plant [1994] for
the hydrodynamic modulation transfer function, m:

mð!ki;
!
kÞ ¼ � ki

Fi

@Fi

@ki
þ cgi

ci
� 1

� �
cos2 ðfl � fiÞ þ

1

Fi

@Fi

@fi

��

� cos ðfl � fiÞ sin ðfl � fiÞ
�
� ibmt

wl

u
*
Fi

@Fi

@u
*

���
1� i

b
wl

�

ð57Þ

where mt is the shear stress modulation at the surface,
wl ¼

ffiffiffiffiffiffi
gkl

p
is the long wave angular frequency, ci and cgi are

the intrinsic phase and group speeds of the intermediate
waves and the relaxation rate, b, is approximated by the
magnitude of the growth rate given by [Plant, 1982]

b ¼
0:04u2

*
ki

ci
jcosfi j: ð58Þ

Hara and Plant determined mt from their microwave
measurements looking into the wind at X band and
intermediate incidence angles. A good fit to their measure-
ments is given by

mt ¼
30

U

� �
eipð15=U�1Þ=8 ð59Þ

However, for reasons explained below, we let mt = 0 in this
model. The value of Fim(

!
ki,

!
x ) given by equation (56) is the

spectrum of the intermediate waves to be used in the
calculations below of intermediate wave quantities for fixed
longwave parameters.
[38] For these intermediate-scale waves, we perform

computations entirely analogous to those for long waves
changing all ‘‘l’’ subscripts to ‘‘i’’, setting integration ranges
from k1 to k2, and replacing Fl by Fim. Note that the use of
Fim rather than Fi means that intermediate-scale heights and
slopes will vary with position on the large-scale wave.
Another difference now is that intermediate scale unit

Figure 3. The E spectrum at various wind speeds and fetches of 9.7U2 km. (a) The wave height
variance spectral density in the direction of the wind. The dash-dotted line in shows k�4, while the
dashed line is k�3.5. (b) The curvature spectrum in the wind direction. (c) The angular part of the
spectrum, D(k, f). The solid lines show, in order of increasing loop size, k/kp = 1, 3, 10, and 50, while
the dashed line is k/kp = 1000.
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vectors are rotated relative to the large-scale ones by the
large-scale slopes. If we adopt the convention of rotating first
in the plane of incidence then perpendicular to it, we have,

!
ii ¼ cos g

!
l il þ þ sin g

!
l kl!

ji ¼ � sina
!
l il þ cosa

!
l jl þ sinal cos g

!
l kl!

ki ¼ � sin gl cosa
!
l i � sina

!
l jl þ cosal cos g

!
l kl:

ð60Þ

where
!
S1 ¼ tan g

!
1il þ tana !

l jl . In addition to the calcula-
tions of heights and slopes for the intermediate waves, we
also must calculate the autocorrelation function, ri. Since
the mean square height of the intermediate waves after
modulation by large-scale ones is given by

s2im ¼
Z k2

k1

Fim

� !
k
�
d

!
k; ð61Þ

we may write the autocorrelation function as

rimðx; zÞ ¼
1

s2i

Z k2

k1

Fimð
!
k Þei

!
k� !

xd
!
k ð62Þ

where
!x ¼ x

!
ii þ z

!
ji. Once again, note that the intermediate

scale quantity, rim, depends on location. This result for rim
may be substituted into the integrand of equation (12) for ri,
which can then be evaluated numerically.
[39] Small wave quantities are somewhat easier to deal

with than the intermediate and large-scale ones since we
need only know the spectrum. However, the spectrum is
modulated by both the large and intermediate-scale waves.
Thus the small-scale spectrum after modulation by the
large-scale waves is

Fslð
!
ks;

!
xÞ ¼ Fs

"
1þ

Z k1

0

mð !
ks;

!
kÞ½kalð

!
k Þ=tanh kd
 ei

!
k� !
xd

!
k

#

ð63Þ

where m is given by equation (57) with ‘‘i’’ subscripts
changed to ‘‘s’’. Now, these small-scale spectra are further
modulated by the intermediate-scale waves:

Fsmð
!
ks;

!
xÞ ¼ Fsl 1þ

Z k2

k1

mð !
ks;

!
kÞ½kaimð

!
k Þ=tanh kd
ei

!
k� !
xd

!
k

� �
ð64Þ

where

aimð
!
kÞ ¼ eigð

!
kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fimð

!
kÞ

q
=dk ð65Þ

[40] The modulated stress given by Hara and Plant was
obtained by considering only modulation of short waves by
long waves; the cascade process whereby long waves
modulate intermediate waves which in turn modulate small
scale waves was ignored. When we tried here to use
equation (57) with mt given by equation (59) while also
including this cascading modulation, we obtained modula-
tions that were much too large, frequently yielding negative
spectral densities for the small waves. This is the reason we

have let mt = 0 here. Substituting Fsm into equation (11) in
place of Fs yields the part of the small wave cross section
coming from that particular spatial location.

6. Comparison of Model Results With Data

[41] The model outlined above was coded in Matlab and
run on a PC with a Pentium III 500 MHz processor and 128
MBytes of RAM. The code required approximately 5 min to
obtain so (VV ) and so (H H ) for a single wind speed,
incidence angle, and azimuth angle. The scattering model
was run using both the D and E spectral models. In addition,
a variable wind speed was used in the D spectrum by
computing the spectrum for various wind speeds within a
small interval of variation, specified by the standard devia-
tion of the wind speed (stdU). The procedure used is
described in detail by Plant [2000]. The net result of
including a variable wind speed in the D spectrum is to
raise the spectral densities in the high wave number region
for wind speeds below 5 m/s. Above this wind speed,
variable winds have no effect on the calculations. Variable
wind speeds have little effect on the E spectrum.
[42] Figure 4 compares the output of the model for a 0�

incidence angle and 14 GHz microwave frequency with
TOPEX/Poseiden altimeter data taken from Hwang et al.
[1998]. The solid and dashed lines in Figure 4a are the result
of evaluating the Kirchhof integral for the intermediate scale
waves numerically using the D spectrum with no wind
variability and using the E spectrum, respectively. The
dotted(D spectrum) and dash-dotted (E spectrum) lines in
the figure were obtained using the quasi-specular approx-
imation for intermediate scale scattering. That is, equation
(14) was evaluated with q = qi and si = 0. At this incidence
angle wind variability played little role in the predictions so
no curves are shown for the D spectrum with wind varia-
bility. Obviously, the quasi-specular approximation does not
fit the data as well as the complete numerical evaluation of
the Kirchhof integral. Furthermore, these results indicate that
cross sections at nadir are primarily due to intermediate scale
waves that have been tilted by large scale waves so that they
are effective scatterers at this incidence angle. Figure 4b
shows the result of evaluating equation (14) for the large
scale waves. Clearly these large scale waves contribute very
little to the total backscatter at 0� incidence angle. Scattering
from these waves drops rapidly with increasing incidence
angle so the model shows that large scale waves virtually
never contribute significantly to microwave backscatter from
the ocean. As discussed in Section 3, the exception to this
occurs when the sea is completely calm. For instance, if
equation (15) is evaluated for a 0� incidence angle, a micro-
wave frequency of 14 GHz, and an antenna beam width of
2�, the resulting large scale cross section linearly ranges
between 36 dB and�39 dB for si + ss between 0 and 0.5 cm.
[43] Figure 5 compares model output with data collected

from an airship by Plant et al. [1998] as a function of
azimuth angle for various incidence angles. The data are for
wind speeds of 2 and 8 m/s. The solid lines show that the D
spectrum with no wind variability yields good fits to the 8
m/s data at all incidence angles and to the 2 m/s data at the
10� incidence angle. However, it begins to fall below the
data at a 30� incidence angle and is so far below the data at
a 50� incidence angle that it is below the bottom of the
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graph. This is in agreement with the results of Plant [2000]
and suggests that the wind during the period of measure-
ment was not perfectly constant at its mean value. Rather it
exhibited variability so that the D spectrum with stdU = 1.5
m/s provides a better fit. Note that the fit is still not perfect
as should be expected since data collection was spread over
a period of about two weeks during which the wind
variability could not be expected to remain constant. Note
however, that this result provides a much better fit to the
data than the results using the E spectrum that are shown as
dashed lines. Obviously this spectral form does not produce

sufficient roll off at low wind speeds. One obvious feature
of these plots is that, except perhaps at 30� incidence, the
angular dependence is only qualitatively correct. At 10� the
model yields somewhat too much angular dependence while
at 50� it does not produce enough. If the scattering model is
correct, this suggests that neither of the spectral models has
an angular spreading function that is correct.
[44] Figure 6 shows model predictions and data from

Plant et al. [1998] for azimuthally averaged cross sections
versus wind speed at three different incidence angles. The
fit of all predictions to the data at the 10� incidence angle is
rather good. This also applies to the other incidence angles
at wind speeds above about 6 m/s, except perhaps for the
predictions using the D spectrum at a 50� incidence angle
and HH polarization. In this region the E spectrum seems to
yield better results. Below wind speeds of about 6 m/s, the E
spectrum yields values that are too high at the higher two
incidence angles while the fit of the D spectrum to the data
depends on wind variability, as usual.
[45] In order to check predictions of the model at various

microwave frequencies, we ran the model for a range of
frequencies from 1.2 to 17.25 GHz at three different inci-
dence angles at a 10 m/s wind speed and compared its
predictions with data from Unal et al. [1991] and with the
CMOD4 and NSCAT2 scatterometer model functions. The
results are shown in Figures 7–9. In all these figures the solid
and dashed lines show results using the D spectrum at VV
and HH polarizations, respectively. Dash-dotted and dotted
lines are results using the E spectrum at VV and HH
polarizations, respectively. Figure 7 shows data, scatterom-
eter model function values, and model predictions for the
azimuthally averaged cross section at various microwave
frequencies. The model predictions are generally somewhat
below the data of Unal et al. but closer to the values
obtained from the scatterometer model functions. The ratio
of VV to HH cross sections predicted by the model at a 45�
incidence angle seems to be larger than either the data of
Unal et al. or those given by the NSCAT2 model function.
This is a common feature of Bragg/composite surface
scattering models. A possible explanation for this discrep-
ancy in terms of bound, tilted Bragg waves has been
suggested by Plant [1997]. We feel that the nature of these
waves is not sufficiently well understood to include in this
model at the present time but will attempt to incorporate
them in the future. Figure 8 compares upwind/downwind
ratios of the measured and modeled cross sections for the
two polarizations. Both data and model indicate that this
ratio is often smaller than one at a 20� incidence angle.
Predictions of the model using the E spectrum yield this
result more often that those using the D spectrum. At the
highest incidence angle, model predictions of this ratio are
somewhat lower than the data, indicating that modulation
of the short waves is perhaps not being accurately modeled.
Finally, Figure 9 compares measured and modeled upwind/
crosswind ratios of the cross sections for the two polar-
izations. Fits of the model predictions to the data are
reasonably good except perhaps a the 45� incidence angle
for the lower microwave frequencies. Also, the E spectrum
produces a much worse fit to the data at 20� incidence than
does the D spectrum. These results show that the model
presented here when combined with accurate data can
provide a sensitive means of checking our knowledge of

Figure 4. Cross sections at zero degrees incidence angle
predicted by the model compared with those measured by the
TOPEX/Poseiden altimeter. (a) Results of the full model.
Solid line - D spectrum with numerical integration of the
Kirchhof integral; dotted line - D spectrum with integral
approximated by equation (14); dashed line - E spectrum
with numerical integration of the Kirchhof integral; dash-
dotted line - E spectrum with integral approximated by
equation (14). Circles are data taken from Hwang et al.
[1998]. (b) Results of quasi-specular scattering from only
large-scale waves. Solid line - D spectrum; dashed line - E
spectrum.
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the spectrum and interactions of surface waves as well as
the accuracy of the scattering model. Iteration of improve-
ments in the scattering model and in our knowledge of
surface waves should lead to a convergence of the modeled
results with the data.
[46] A large set of data is available at 36 GHz as a result

of many years operation of the Scanning Radar Altimeter
(SRA) [Walsh et al., 1998]. Unfortunately, these data are not
absolutely calibrated to yield a normalized radar cross
section of the sea surface. They do clearly show the
dependence of the received power on incidence angles near
nadir, however; such data have been used to infer the mean
square slope of the sea surface. In Figure 10, we compare
data given by Banner et al. [1999] (See their Figure 12)
with the results of the present model using the D spectrum
and with quasi-specular theory using the mean squared
slope deduced by Banner et al. We have converted their
measurements to normalized radar cross section in dB and
forced them to fit the results of the present model at nadir.
Using the radar equation, it is straightforward to show that
the relationship between the logarithm of received power,
ln(Pr), given by Banner et al. and so in dB is

soðdBÞ ¼ C þ ½ ln ðPrÞ � ln ðAl cos
4 qÞ
=0:23 ð66Þ

where C is a constant, depending on the system. The total
area Al is pulse limited well off nadir and beam limited near
nadir. Thus we let Al be

Al ¼ min
p�2h2

4 cos3 q
;

ffiffiffi
p

p
�hrr

2 cos q sin q

� �
ð67Þ

where � is beam width (1�), h is altitude (40 m), and rr is
range resolution (15 cm). Comparisons are shown for wind
speeds of 6.8 m/s and 15.4 m/s for upwind/downwind
looks and for a wind speed of 15.4 m/s for a cross wind
look. (Note that flight directions are given in Figure 12 of
Banner et al., not antenna look directions.) Data from the
present model are shown for HH and VV polarization as
the symbols in Figure 11. Original data of Banner et al
(VV polarized) are shown as the dashed line while data
converted to so are shown as dash-dotted lines. Quasi-
specular predictions for the mean square slopes found by
Banner et al., are shown as solid lines. The data fit both
models very well out to incidence angles of about 12� (q2

= 0.044 radians2). Mean square slopes given by Banner et
al., which they obtained from quasi-specular theory over
this range, agree well with mean square slopes given by
the D spectrum for long and intermediate-scale waves.
Values are compared in Table 1. Beyond 12� incidence,
the quasi-specular predictions fall farther below the data
than does the present model since quasi-specular theory
does not make the transition to Bragg scattering as the
present model does.

[47] As mentioned earlier, the present model makes the
transition from quasi-specular, or Kirchhof integral, scatter-
ing to Bragg scattering in a natural and gradual manner. This
is illustrated in Figure 11 for using the two different spectral
forms. All parts of the figure display the fraction of the
azimuthally averaged, VV polarized cross section that can be
considered to be Bragg scattering as a function of wind
speed and for incidence angles of 0�, 10�, 20�, and 35�.
Figure 11a shows this fraction as predicted by the model
using the D spectrum and no wind variability. Figure 11b is
the same but with a standard deviation of wind speed of 1.5
m/s. Finally, Figure 11c shows the result of using the E
spectrum in the model. Perhaps the most surprising aspect of
these results is the fact that backscatter from the sea surface
can often be considered to be Bragg scattering at low wind
speeds even at quite low incidence angles. Thus at an
incidence angle of 10�, between 40 and 70% of the back-
scatter at a 3 m/s wind speed may be Bragg scattering,
depending on the spectral model used. Even at nadir, a
substantial fraction of the backscatter may be described as
Bragg scattering at very low wind speeds, depending on the
level of wind variability. The figure shows that the conven-
tional wisdom that the transition to Bragg scattering occurs
between 10� and 20� incidence angles is not bad but that the
transition depends in detail on many factors. The figure
illustrates the most important factors, those of wind speed
and wave spectrum; the Bragg scattering fraction also
depends on azimuth angle and polarization to a lesser degree.

7. Conclusion

[48] This article has presented a new stochastic, multi-
scale model for microwave backscatter from the sea that is
built on recent advances in scattering theories. The model
partitions surface waves on the ocean into three different
categories depending on their mean square heights and
models the scattering from each part by different approx-
imations to the scattering integral given in equation (1).
Short and intermediate scales are tilted, advected, and
modulated by larger-scale waves. The results show that
backscatter seldom arises directly from the large-scale sur-
face. Even at nadir, the scattering can very accurately be
viewed as Kirchhoff scattering from tilted intermediate-
scale waves. The model explains most features of data
collected to date rather accurately, including the level and
wind dependence of nadir backscatter and the wind and
azimuth angle dependence of 10� backscatter that has
recently been reported [Hesany et al., 2000]. Both of these
results are obtained without recourse to an ‘‘effective
reflection coefficient’’.
[49] Some aspects of the model presented here are clearly

inadequate. As mentioned in the previous section, the
dependence of cross sections on azimuth angle is not
sufficiently strong for either of the spectral models consid-
ered, indicating that the angular spreading functions of these

Figure 5. (opposite) Predicted cross sections as a function of azimuth angle compared with data collected from an airship
by Plant et al. [1998]. An azimuth angle of zero indicated an upwind antenna look direction. Highest data and predictions
are at a wind speed of 8 m/s; lowest are at 2 m/s. Solid lines predicted by the model using the D spectrum with no wind
variability; dotted lines predicted using the D spectrum with the standard deviation of wind speed equal to 1.5 m/s; dashed
lines predicted using the E spectrum. Note that no solid line is visible at a 50� incidence angle and a wind speed of 2 m/s
because it is below the bottom of the graph.
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Figure 6. Predicted azimuthally averaged cross sections as a function of wind speed compared with data
collected from an airship by Plant et al. [1998]. Solid lines - D spectrum with no wind variability; dotted
line - D spectrum with the standard deviation of wind speed equal to 1.5 m/s; dashed lines - E spectrum.
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spectral models may not sufficiently anisotropic at high
wave numbers. Also, upwind/downwind ratio are not
always predicted accurately. This is clearly a result of using
a linear model of the modulation of short waves by long.
This is especially evident from the fact that the linear
modulations produced negative spectral densities if airflow
modulation was included. A higher-order model of short
wave modulation has recently been published by Elfouhaily
et al. [2001b]. Inclusion of this or other nonlinear modulat-

ing effects in the model may improve upwind/downwind
ratios in the future. The underestimation of the HH/VV
cross section ratio indicates a further inadequacy in the
model. We hope that the future inclusion of bound, tilted
wave effects will reduce this problem. Finally, the fact that
the division between scales depends on microwave fre-
quency and incidence angle is clearly conceptually inad-
equate. Since longer scales modulate shorter ones, this,
improbably, makes the properties of the sea surface depend-

Figure 7. Azimuthally averaged cross sections at various frequencies at a wind speed of 10 m/s. Data
from Unal et al. [1991] - circles are VV polarization; squares are HH polarization. CMOD4 scatterometer
model function - plus at VV polarization. NSCAT2 model function - asterisk at VV polarization, x at HH
polarization. Predictions of the model: using D spectrum, solid lines are VV polarization, dashed lines are
HH polarization; using E spectrum, dash-dotted lines are VV polarization, dotted lines are HH
polarization.
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ent on the microwave system observing it. This is a problem
that the present model has in common with other composite-
type models, however. As long as the scale separation
parameter is not critical, as it is not here, then this problem
is probably not too severe.
[50] In the present work, we have concentrated on pre-

senting the model and comparing its predictions using two
different spectral models with data collected at incidence
angles below 50�. We believe that the model can eventually
be made accurate out to incidence angles of about 80� but
effects of bound waves [Plant, 1997; Plant et al., 1999] will
need to be included. We are presently working to develop an
understanding of these waves for use in this extension. This
model also has the potential to predict Doppler spectra as a

function of time and space at any incidence angle out to 80�.
Our future work will also focus on this extension.

Appendix A

[51] In this appendix, we show that the scattering theories
of Fung et al. [1992], hereafter FLC, and of Voronovich
[1994], hereafter Voronovich, yield identical results for the
normalized radar cross section of the sea for backscatter for
incidence angles above which multiple scattering is impor-
tant. Voronovich sets this limit at 90� minus the RMS slope
of the surface. As mentioned in the text, this is not the case
for bistatic scattering where the Integral Expansion Method
of FLC does not seem to be correct [Elfouhaily et al., 2001a].

Figure 8. Upwind/Downwind ratios at various frequencies at 10m/s. Symbols and lines are as in Figure 7.
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We consider first the Integral Expansion Method and then
turn to the Small Slope Approximation of Voronovich.

A1. Integral Expansion Method

[52] In their equation (77) FLC give their backscattering
cross section for the polarizations p and q as the sum of

three terms:

soqp ¼ skqp þ skcqp þ seqp ðA1Þ

The terms on the right hand side are given in their equations
(78), (79), and (80). These equations involve the parameters
of integration u and v. They show, however, that their

Figure 9. Upwind/Crosswind ratios at various frequencies at a wind speed of 10 m/s. Symbols and lines
are as in Figure 7.

Figure 10. Normalized radar cross section at 36 GHz versus incidence angle squared. Data have been fit
to themodel at nadir. Asterisks and circles are predictions of the present model for VVandHHpolarizations,
respectively, using the D spectrum. The solid line is tan2 q as given by the quasi-specular model. Dashed
lines are ln(Pr) given by Banner et al. [1999] divided by 0.23. Dash-dotted lines are these data corrected for
illuminated area and range. (a) Upwind/downwind antenna look, wind speed = 6.8 m/s. (b) Upwind/
downwind antenna look, wind speed = 15.4 m/s. (c) Cross-wind antenna look, wind speed = 15.4 m/s.
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equations include both single and multiple scattering and we
expect that the multiple scattering effects will be small for
all but the highest incidence angles. They also show that one
function in their integrands, Fqp(u, v), appears in the single
scattering equations for small wave heights or low
frequencies, ie, for kocos qs < 3, only with v = 0 and u =
±kosinq. We may therefore include all of their small wave
height and low frequency single scatter terms in the
equations if we set Fqp(u, v) = [Fqp(kosin q, 0) +
(Fqp(�kosinq, 0)]/2 in their equations. This procedure also
leaves some multiple scattering terms in the equations but
we make the assumption that they are very small compared
to the single scattering ones in our region of interest. We
now consider the terms on the right side of equation (A1)
after correcting some small typos in the equations of FLC.
[53] Equation (78) does not involve Fqp(u, v) so we may

take it as it stands. Letting kx = ko sinq and kz = ko cos q, we
have:

skqp ¼
k2o
4p

j fqp j2 e�4k2z s
2

Z
e4k

2
z s

2rðx;zÞ � 1
� �

e�i2kxxdxdz: ðA2Þ

FLC give expressions for fqp, which we will consider later.
[54] Making our substitution for Fqp(u, v) in equation

(79) and integrating over u and v yields,

skcqp ¼
k2o
8p

Ref½Fqpðkx; 0Þ þ Fqpð�kx; 0Þ
 fqp*g
Z
e�3k2z s

2

e�k2z s
2rðx�x0;z�z0Þ

� e2k
2
z s

2½rðx;zÞþrðx0;z0Þ
 �1
� �

dðx�x0Þdðz�z0Þe�jkxðxþx0Þdxdzdx0dz

ðA3Þ

Carrying out the x0 and z0 integrals and the ‘‘Re’’ operation
yields,

skcqp ¼
k2o
16p

½Fqpðkx; 0Þ þ Fqpð�kx; 0Þ
 fqp* þ ½Fqp* ðkx; 0Þ
�

þFqp*ð�kx; 0Þ
 fqpÞe�4k2z s
2

Z
e�4k2z s

2rðx;zÞ � 1
� �

e�i2kxxdxdz

ðA4Þ

This is the same as equation (78) if we let

j fqp j2! ½Fqpðkx; 0Þ þ ðFqpð�kx; 0Þ
 fqp* þ ½Fqp* ðkx; 0Þ
�

þFqp*ð�kx; 0Þ
 fqpÞ=4: ðA5Þ

[55] Turning now to equation (80), after our substitution
for Fqp(u, v), we can carry out the integrals over u, v, u0, and
v0 to obtain

scqp ¼
k2o
64p

jFqpðkx; 0ÞþFqp*ð�kx; 0Þj2Z
e�2k2z s

2

e�k2z s
2 ½rðtþx�x0 ;kþz�z0Þþrðt;kÞ


� ek
2
z s

2½rðxþt;kþzÞþrðx0�t;z0�kÞþrðx;zþÞþrðx0 ;z0 Þ
 � 1
� �
� dðkÞdðtÞdðz� z0 þ kÞdðx� x0 þ tÞ

�e�i2kxðxþx0Þ dxdzdx0dz0dtdk ðA6Þ

Then carrying out the k, t, V0, and z0 yields,

scqp ¼
k2o
64p

j Fqpðkx; 0Þ þ Fqp*ð�kx; 0Þ j2 e�4k2z s
2

Z
e4k

2
z s

2rðx;zÞ � 1
� �

e�i2kxxdxdz ðA7Þ

This is once again the same as equation (78) with the
substitution

j fqp j2!jFqpðkx; 0Þ þ Fqp*ð�kx; 0Þj2 =16 ðA8Þ

Figure 11. Fraction of azimuthally averaged, VV polarization cross section due to Bragg scattering
versus wind speed. Circles - 0� incidence, squares - 10� incidence, diamonds - 20� incidence, asterisks -
30� incidence. (a) D spectrum with no wind variability, (b) D spectrum with the standard deviation of
wind speed equal to 1.5 m/s, and (c) E spectrum.

Table 1. Mean Square Slopes, Measured and Modeled

Wind Speed, m/s

Su Sc

Banner et al.
[1999]

Present Banner et al.
[1999]

Present

6.8 0.013 0.015 0.009 0.012
15.4 0.029 0.031 0.020 0.026
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[56] We may therefore write the result of the Integral
Expansion Method for the case of backscatter at incidence
angles that are not too large to be

soqp ¼
k2o
4p

j�qp j2 e�4k2z s
2

Z
e4k

2
z s

2rðx;zÞ � 1
� �

e�i2kxxdxdz ðA9Þ

where

�qp ¼ fqp þ ½Fqpðkx; 0Þ þ Fqpð�kx; 0Þ
=4 ðA10Þ

[57] For vertical polarization on both transmission and
reception, q = p = v and FLC show that if the permeability
of seawater is one,

�vv ¼
2Rv

cos q
þ sin2 qð1þ RvÞ2

2 cos q

 !
1� 1

�
þ sin2 qð�� 1Þ

�2 cos2 q

� �

ðA11Þ

where � is the relative dielectric constant and Rv is the
Fresnel reflection coefficient for vertical polarization

Rv ¼
�2 cos2 q� �� sin2 q

½� cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

p

2
: ðA12Þ

In their Section VII, FLC. go on to show that Bvv may be
written in the form

�vv ¼ Rv cos
2 qþ sin2 qð1þ RvÞ2

2
1� 1

�

� �
ðA13Þ

Substituting for Rv yields,

�vv ¼
2

cos q
2ð�� 1Þ½�ð1þ sin2 qÞ � sin2 q
 cos q

� cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2
2
64

3
75 ðA14Þ

Thus we may write,

sovv ¼
k2o

p cos2 q
jgvv j2 e�4k2z s

2

Z
e4k

2
z s

2rðx;zÞ � 1
� �

e�i2kxxdxdz

ðA15Þ

where

gvv ¼
ð�� 1Þ½�ð1þ sin2 qÞ � sin2 q
 cos2 q

� cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2 ðA16Þ

[58] Similarly, for horizontal polarization, FLC give

�hh ¼ � 2Rh

cos q
� sin2 qð1þ RhÞ2

2 cos q

 !
�� 1

cos2 q

� �
ðA17Þ

where the Fresnel reflection coefficient for horizontal
polarization is

Rh ¼
1� �

½ cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

p

2
: ðA18Þ

Some straightforward algebra shows that we may write �hh

as

�hh ¼ �2Rh cos q ðA19Þ

or, substituting Rh,

�hh ¼
2ð�� 1Þ cos q

cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2 ðA20Þ

Thus we may write

sohh ¼
k2

p cos2 q
jghh j2 e�4k2z s

2

Z
e4k

2
z s

2rðx;zÞ � 1
� �

e�i2kxxdxdz

ðA21Þ

where

ghh ¼
ð�� 1Þ cos2 q

cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2 ðA22Þ

A2. Small Slope Approximation

[59] In his equation 6.9, Voronovich gives,

sNN0

aao
¼ ð2qðNÞ

k q
ðNoÞ
ko

Þ2 jBNNo

aao
ð !
k;

!
koÞj2

Z
e�ð

!
k� !

koÞ�!r e�Q2s2

� exp ðQ2W ð !
rÞÞ � 1

Q2

 !
d

!
r

ð2pÞ2
ðA23Þ

This is the first-order expression for the incoherent part of
the scattering cross section given by the small slope
approximation. In this notation, N and No are superscripts
indicating the medium; we take 1 to be air, 2 to be water. We
are interested in N = No = 1 for backscatter in air. The letters
a and ao indicate polarization and in Voronovich’s notation,
1 is vertical and 2 is horizontal. We will use q, p, v and h,
though, to agree with the notation of FLC. Then saao

11

becomes sqp
o . In equation (A23),

!
k and

!
ko are horizontal

component of the scattered and incident radiation, respec-
tively. For backscatter,

!
ko = � !

k � (kx, ky). The quantities
qk
(N) and qko

(No) are vertical wave numbers of scattered and
incident waves and, in general, can be complex. For
backscatter, we have,

q
ð1Þ
ko

¼ q
ð1Þ
k ¼ ko cos q � kz ðA24Þ

Both qko and qk are positive because by Voronovich’s
definition they are in the first quadrant of the complex
plane. Q is given by

Q ¼ �q
ð1Þ
k � q

ð1Þ
ko

¼ �2ko cos q � �2kz ðA25Þ

W(r) is the coherence function, s2r, in the notation of FLC.
Letting

!
r = (z, x) in equation (A23), we have

soqp ¼
k2z

ð2pÞ2

 !
jBqp j2 e�4k2z s

2

Z
e4k

2
z s

2rðz;xÞ � 1
� �

e�i2kxxdzdx:

ðA26Þ

We omit the dependence of Bqp on
!
k and

!
ko because we

will show shortly that this dependence does not exist for
backscatter. Equation (A26) has the same form as the result
of FLC; we now proceed to show that Bqp is such that the
two results are, in fact, identical.
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[60] In equation (4.15), Voronovich gives,

Baao
¼ d

ð1Þ
1a ðkÞ

!
k � !

ko

kko
ðŝ3Þaao

þ
!
N � !

k � !
ko

kko
ðŝ1Þaao

 

� 1

�1�2
d
ð1Þ
2a ðkÞ

1

2
ðŝo þ ŝ3Þaao

d
ð1Þ
2ao

ðkoÞ

�
d
ð1Þ
1ao

ðkoÞ ðA27Þ

In his equation (3.5), Voronovich shows that

ðŝ3Þ11 ¼ 1; ðŝ3Þ22 ¼ �1; ðŝoÞ11 ¼ 1; ðŝoÞ22 ¼ 1 ðA28Þ

Because qk
(2) =

ffiffiffiffiffiffiffi
�2k

p
cos qw , where cos qw is the incidence

angle in water, the set of equations after Voronovich’s
equation (4.14) yield,

d
ð1Þ
11 ðkÞ ¼

k cos qw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2ð�2 � �1Þ

p
ð�2k cos qþ �1

ffiffiffiffi
�2

p
k cos qwÞ

ðA29Þ

d
ð1Þ
12 ðkÞ ¼

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � �1Þ

p
ðk cos qþ ffiffiffiffi

�2
p

k cos qwÞ
ðA30Þ

d
ð1Þ
21 ðkÞ ¼

�2k sin qffiffiffiffi
�2

p
k cos qw

ðA31Þ

d
ð1Þ
22 ðkÞ ¼ 0 ðA32Þ

Here �1(=1) is the permittivity of air, and �2 (� �) is the
permittivity of water.
[61] Note that k cancels out in all equations for d’s. Also

note that

!
k � !

ko

kko
¼ �1 ðA33Þ

and

!
k � !

ko ¼ 0 ðA34Þ

for backscatter. Finally, Snell’s law is

sin q ¼
ffiffi
�

p
sin qw: ðA35Þ

This implies that

cos qw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

�
sin2 q

r
ðA36Þ

[62] Then, substituting all of this in equation (A27) and
converting to the notation of FLC, we have,

Bvv ¼
ð�� 1Þ½ sin2 q� �ð1þ sin2 qÞ


� cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2 ðA37Þ

for VV polarization and

Bhh ¼
�� 1

cos qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin2 q

ph i2 ðA38Þ

for HH polarization. When these expressions for Bvv and Bhh

are inserted into equation (A26), they yield precisely the
results of FLC expressed in equations (A15) and (A21)
divided by 4p. This is because Voronovich uses a definition
of cross section more common in the US in acoustics and it
differs from the standard US microwave usage by precisely
this factor of 4p [Dahl et al., 1997].

Appendix B

[63] Consider a antenna transmitting a beam directed at a
perfectly flat water surface at a very small incidence angle,
q. The radar equation tells us that the power received by this
antenna due to backscatter from the surface is

Pr ¼
PtG

2
ol

2soðqÞAs

ð4pÞ3R4
o

ðB1Þ

where Pt is the transmitted power, Go is the maximum gain
of the antenna, l is the microwavelength, As is the two-way
illuminated surface area, and Ro is the range to the surface.
As is given by

As ¼ pR2ð�2=2Þ2 ¼
p
8
R2�2

1 ðB2Þ

where �1 and �2 are one and two-way, full, half-power
beam widths, respectively.
[64] Now the power scattered from the surface will

exactly correspond to the power that would be transmitted
by an image of the antenna below the surface, reduced by
the square of the reflection coefficient, R. Thus, another
way to write Pr is

Pr ¼
Pt jRð0Þj2 GðqÞAe

4pð2RÞ2
ðB3Þ

where Ae is the effective antenna pattern given by

Ae ¼
l2GðqÞ
4p

ðB4Þ

[65] Thus, equating the received powers from the two
expressions and solving for so, we get

so ¼
8 jRð0Þj2

�2
1

� �
G2ðqÞ
G2

o

� �
ðB5Þ

The ratio of the gain of the antenna in a particular direction
to the maximum gain will depend on the antenna. However,
we may approximate it for a Gaussian beam width by an
exponential function whose full, half-power beam width is
determined by �2. Then we get

so ¼
8 jRð0Þj2

�2
1

� �
e�8ð ln 2Þq2=�2

1
: ðB6Þ
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