
ASGA: Improving the Ant System by Integration with Genetic
Algorithms

Tony White, Bernard Pagurek, Franz Oppacher1

Systems and Computer Engineering, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

email: {tony, bernie}@sce.carleton.ca

1 Email: oppacher@scs.carleton.ca

ABSTRACT
This paper describes how the Ant
System can be improved by self-
adaptation of its controlling parameters.
Adaptation is achieved by integrating a
genetic algorithm with the ant system
and maintaining a population of agents
(ants) that have been used to generate
solutions. These agents have behavior
that is inspired by the foraging activities
of ants, with each agent capable of
simple actions. Problem solving is
inherently distributed and arises as a
consequence of the self-organization of a
collection of agents, or swarm system.
This paper applies the Ant System with
Genetic Algorithm (ASGA) system to
the problem of path finding in
networks, demonstrating by
experimentation that the hybrid
algorithm exhibits improved
performance when compared to the
basic Ant System.

1. Introduction
The notion of complex collective behavior emerging from
the behavior of many simple agents and their interactions is
central to the ideas of Artificial Life [Langton, 87]. There
are many examples in Nature of social systems where
individuals possess simple capabilities which, when
compared to their collective behaviors, are much more
complex. Such systems span many levels of evolutionary
complexity, from simple bacteria [Shapiro, 88], to ants
[Goss et al, 90], [Franks, 89], caterpillars [Fitzgerald and
Peterson, 88] and beyond.

The continuing investigation and research of naturally-
occurring social systems offers the prospect of creating
artificial systems that are controlled by emergent behavior
and promises to generate engineering solutions to
distributed systems management problems such as are
found, for example, in telecommunications networks.

In this paper we describe the essential principles of
Swarm Intelligence (SI) and, in particular, how an
understanding of the foraging behaviors of ants [Beckers et
al, 92] has led to new approaches to control and
management in telecommunications networks and a new
combinatorial optimization technique, Ant Search.

Ant Search applications [Kunz and Snyers, 94; Colorni
et al, 92] have identified the need for appropriate choice of
control parameters. It is this observation that motivates the
research reported in this paper. This paper proposes the
integration of Genetic Algorithms with an Ant Search
algorithm for the purpose of enhancing the latter.

This paper consists of six major sections. In the next
section, a brief overview of Swarm Intelligence and Ant
Colony search is presented with a brief review of
applications of Ant Search (AS) being provided. The next
section describes the Ant System with Genetic Algorithms
(ASGA) system and provides an overview of the algorithm
used. The following section describes the three path-finding
problems that are the subject of investigation in this paper.
Experimental setup and results are then detailed for the
three network path finding problems described. The final
sections provide a summary and a statement of future work
that is planned with this system and derivatives of it.

2. Swarm Intelligence and the Ant
Colony

Swarm Intelligence [Beni and Wang, 89] is a property of
systems of unintelligent agents of limited individual
capabilities exhibiting collectively intelligent behavior. An
agent in this definition represents an entity capable of
sensing its environment and undertaking simple processing
of environmental observations in order to perform an action

chosen from those available to it. These actions include
modification of the environment in which the agent
operates. Intelligent behavior frequently arises through
indirect communication between the agents, this being the
principle of stigmergy [Grassé, 59]. It should be stressed,
however, that the individual agents have no explicit
problem solving knowledge and intelligent behavior arises
(or emerges) because of the actions of societies of such
agents.

Individual ants are behaviorally simple insects with
limited memory and exhibiting activity that has a stochastic
component. However, collectively ants manage to perform
several complicated tasks with a high degree of consistency.
Examples of sophisticated, collective problem solving
behavior have been documented [Frank, 89; Hölldobler and
Wilson, 94] including:

• Forming bridges
• Nest building and maintenance
• Cooperating in carrying large items
• Finding the shortest routes from the nest to a food

source
• Regulating nest temperature within a one degree

Celsius range
• Preferentially exploiting the richest source of food

available.

In the examples listed above, two forms of stigmergy
have been observed. Sematectonic stigmergy involves a
change in the physical characteristics of the environment.
Ant nest building is an example of this form of
communication in that an ant observes a structure
developing and adds its ball of mud to the top of it. The
second form of stigmergy is sign-based. Here something is
deposited in the environment that makes no direct
contribution to the task being undertaken but is used to
influence the subsequent behavior that is task related.

Sign-based stigmergy is highly developed in ants. Ants
use highly volatile chemicals called pheromones (a
hormone) to provide a sophisticated signaling system. Ants
foraging for food lay down quantities of pheromone
marking the path that it follows with a trail of the
substance. An isolated ant moves essentially at random but
an ant encountering a previously laid trail will detect it and
decide to follow it with a high probability and thereby
reinforce it with a further quantity of pheromone. The
collective behavior which emerges is a form of autocatalytic
behavior where the more the ants follow the trail the more
likely they are to do so. The process is characterized by a
positive feedback loop, where the probability that an ant
chooses any given path increases with the number of ants
choosing the path at previous times.

The use of ant foraging behavior as a metaphor for a
problem-solving technique is generally attributed to Dorigo

[Dorigo et al, 91]. In the AS, problem solving can loosely
be described as finding an optimal path through a network.
Since his early work on the Travelling Salesman Problem
(TSP) and Asymmetric TSP, the technique has been
applied to several other problem domains. These include
the Quadratic Assignment Problem (QAP) [Maniezzo et al,
94; Taillard et al, 97], graph coloring [Costa and Hertz,
97], vehicle routing [Bullnheimer et al, 97] and
communications network routing. [Schoonderwoerd et al,
97] and [Di Caro and Dorigo, 97] have applied AS to
routing problems in communication networks. Both
applications of AS in this domain have been in a control
setting with the former group using AS for circuit switched
path routing while the latter have used it for packet
switched routing. Both groups report improvements in
network throughput by application of ant-inspired
algorithms.

Variations on the basic AS have also been proposed.
Local search operations have been proposed [Stützle and
Hoos, 97], as has the integration of reinforcement learning
[Leerink et al, 95], or Q-learning [Gambardella and
Dorigo, 95].

3. The ASGA System
The AS is characterized by a number of controlling
parameters such as the number of iterations of the
algorithm, the number of agents (ants) used per iteration,
the sensitivity to the cost of a link in the network and the
sensitivity to pheromone concentration. The ASGA system
allows the parameters controlling the sensitivity to the cost
of a network link and the sensitivity to pheromone
concentration to adapt as the search algorithm proceeds.

The ASGA system integrates a genetic algorithm with an
ant system for the purpose of controlling the adaptation
process. Each agent in the ASGA system encodes the
sensitivity to link and sensitivity to pheromone parameters.
The ASGA system algorithm can be described in pseudo-
code as follows:

Procedure ASGA
Begin
 InitializePopulation.
 For n := 1 to numberOfIterations do:
 Begin
 For k :=1 to populationSize do:
 UseAgentToSolveProblem(k)
 For k := 1 to populationSize do:
 ReinforcePathFollowedByAgent(k)
 GenerateAgentParameters
 End
End

A population of agents is maintained in ASGA, with
each member of the population having been used to solve
the problem in question using an AS algorithm. Each agent

has a fitness value associated with the solution found. For
example, in the case of the problem of finding a simple
route in a network or a travelling salesman problem, this
might be the inverse of the cost of the route found.

The InitializePopulation function randomly generates
values for pheromone and cost sensitivities and assigns
them to agents; i.e. the first iteration of agents is
constructed. The GenerateAgentParameters function is
used to generate the cost and pheromone sensitivity values
for the next iteration. This function follows the standard
mechanism of a genetic algorithm [Goldberg, 89]. Agents
from the current generation (P) are sampled, with
replacement, to generate an intermediate population (Q).
This intermediate population is then manipulated
genetically, using crossover and mutation operators to form
a second intermediate population (R). Finally, the merging
of the populations P, Q and R produces the next generation
of agents, (S). The UseAgentToSolveProblem function uses
a typical AS migration algorithm for movement of agents
from node to node in the network. The migration decision
function is given by:

pk(i,j) = [T(i,j)]α k[C(i,j,u)]-ß k

/ Nk (1)

Nk = Σj ∈ Sk (i) [T(i,j)] α
k[C(i,j,u)] -ß k

Where:
• i and j are vertex indices,
• u(i,j) is the utilization of the link between i and j,
• T(i,j) is the quantity of pheromone present on the link

between the ith and jth nodes,
• C(i,j,u) is the cost associated with the link between the

ith and jth nodes with utilization u(i,j),
• Sk (i) is set of nodes not yet visited for the kth agent

that can be reached from the ith node,
• pk(i,j) is the probability that the kth agent will choose

the edge from the ith to the jth node as its next hop,
• αk is the sensitivity to pheromone for the kth agent,

• βk is the sensitivity to the cost of the network link for

the kth agent.

To re-iterate, the values αk and βk are encoded

genetically in the agent's description.
Once all agents have been routed for a given iteration the

ReinforcePathFollowedByAgent function is used to update
the T(i,j) values based upon the routes found by the agents.
The update rule is given by:
T(i,j) ← T(i,j) + ∑k∆Tk(i,j) (2)

Where:

• Rk is the path found for agent k,
• Costk is the cost of path found for agent k,

• f(Costk) is the function used to update pheromone
concentrations on the edges in the path computed by
agent k.

4. Path Finding with ASGA
The ASGA system has been applied to three classes of
problem, all of which are related to routing in networks.
First, the problem of finding a shortest path between two
points in a network has been solved. While this is not a
hard problem for a single route, with Dijkstra's algorithm
[Dijkstra, 59] often being used for shortest path
calculations, it is much harder when multiple paths are
considered and balanced loading of the network is required.
The figure below highlights a simple shortest path between
the vertices n1 and n5.

n1

n2
n3

n4

n5

n6

n7n8

n9 n11

n10

n12

3

4 4

4 3

33

3
1

1
3

3

10

10
2

7

6 2

Figure 1: A example simple path

Second, the problem of computing an optimal path
connecting a subset of the points in the network has been
solved. This problem requires that a spanning tree be
computed that connects the subset of the network vertices
that are on the path. In this problem, the algorithm has to
identify Steiner vertices, that is vertices that are to be
included in the minimum spanning tree along with the
vertices to be connected. These vertices represent the multi-
cast nodes in point to multi-point routing. This is an NP
hard problem and previous research has applied genetic
algorithms for its solution [Mann et al, 95]. In the
aforementioned work, the genetic algorithm identifies the
multi-cast nodes (a node is either a multi-cast node or not)
and then uses the Prim-Kruskal algorithm in order to
compute the minimum spanning tree. While effective, the
solution provided by the augmented ant system directly
computes the minimum spanning tree without further
algorithmic involvement. The figure on the next page
shows a potential path between vertices {n1, n10, n4 and
n7}. In the example shown in the figure the vertices n2 and
n3 have been included as Steiner vertices.

otherwise

RjiCostf
jiT kk

k 0

),()(
),(

∈
=∆

n1

n2
n3

n4

n5

n6

n7n8

n9 n11

n10

n12

3

4 4

4 3

33

3
1

1
3

3

10

10
2

7

6 2

Figure 2: An example multi-point path

Finally, the problem of finding the shortest cycle between
two points in the network has been solved. In this problem
the algorithm has to compute two independent routes
between the source and destination points whose combined
cost is minimal across all possible routes. This problem can
be described another way by identifying the nodes that are
to be included in the cycle -- Steiner vertices -- and
computing the shortest cycle possible. Clearly, this problem
is related to the TSP. Described as above the problem is
known to be NP-complete. The figure below gives an
example of a cycle computed between vertices n1 and n10.

n1

n2
n3

n4

n5

n6

n7n8

n9 n11

n10

n12

3

4 4

4 3

33

3
1

1
3

3

10

10
2

7

6 2

Figure 3: An example cyclical path

4.1. AS solutions for path finding problems
The following three paragraphs describe the migration
algorithms and reinforcement terms used by the AS to solve
the three path finding problems described above.

Problem 1: Point to point path finding
In this problem agents start at the source node and use the
migration decision function in equation (1) to move from
the source to the destination node. The fitness (fk) of the
path found by the agent is the inverse of the sum of the
costs of the edges used in the path from source to
destination. The reinforcement term ∆Tk(i,j) of equation (2)
is computed for the edges used by the kth agent as Qfk,

where Q is a constant.

Problem 2: Point to multi point path finding
Consider for a moment the problem of connecting m+1
nodes, i.e. one source and m destinations. This can be
viewed as m point to point requests that must be satisfied
simultaneously. The migration decision function in
equation (1) is again used to define movement from one
node to the next. However, the fitness of the paths found for
the individual agents use the inverse of the sum of the costs
of the edges with edges counted only once. The
reinforcement term ∆Tk(i,j) of equation (2) is computed for
all edges used by the agents as Qfk, i.e., reinforcement is
equal for the agents associated with the m point to point
requests.

Problem 3: Cyclical path finding
The cyclical path finding problem is similar to the point to
point path finding problem except that path finding
continues beyond the destination and back to the source
node. The migration decision function of equation (1) is
used to move agents from one node to the next and the
fitness of the path found is the inverse of the sum of the
costs of the edges used in the source destination and
destination to source path fragments. The reinforcement
term ∆Tk(i,j) of equation (2) was, once again, given by Qfk.

4.2. Experimental Setup
Two graphs were used during experimental investigation of
the ASGA system for the three problems outlined above.
These are shown in figures 4 and 5 on the next page. The
numbers associated with the edges in these networks
represent the costs of the edges at zero edge utilization.
Each edge is considered to have a capacity of 63 units.

For problem one, the point to point path finding scenario,
ten randomly generated traffic profiles were created for all
source-destination pairs with bandwidth requirements
sampled uniformly from the set {0, 2, 4, 6, 8, 10}
bandwidth units. A bandwidth requirement of zero units
was taken to mean that no path need be calculated for the
source-destination pair. Paths were calculated using ASGA,
with the utilization of the network increasing by the
bandwidth requirements of the traffic as paths emerged. All
paths were computed in parallel. Initial network edge
utilizations of 0, 30, and 50% were considered in order to
test the effects of four different cost functions. For problem
three, the same randomly generated traffic profiles were
used for experimentation. For problem two, ten randomly
generated traffic profiles were created with either 2,3 or 4
destinations. Bandwidth requirements for the point to multi
point requests were identical to problem one.

A population size of 50 was used with path emergence
considered to have occurred when 90% of the population
follow a given path. A maximum of 100 cycles (or
generations) of the ASGA algorithm was allowed before

path calculations were stopped and 20 agents per cycle
were sent out into the network for path finding. The value
of αk was allowed to vary in the range -0.25 to 3 and the
value of bk was allowed to vary in the range -0.125 to 1.5.
A total of 8 bits was allowed for the encoding of αk and
also for bk. When ASGA was contrasted with AS with
constant αk and bk, values of 2 and 1 respectively were
used. These constant values were found to be a reasonable
compromise for AS path finding. A value of 10 was chosen
for Q. An indirect representation was used with mapping of
bit strings into floating point values in the above ranges in
such a way as to cover the ranges uniformly. Values of 0.8
and 0.01 were used for the probabilities of crossover and
mutation respectively. Two-point crossover was used as the
crossover operator.

n1

n2
n3

n4

n5

n6

n7n8

n9 n11

n10

n12

3

4 4

4 3

33

3
1

1
3

3

10

10
2

7

6 2

Figure 4: Experimental Graph I

n1 n2

n3

n4

n5
n6 n7

n8

n9 n14

n10

n12

Figure 5: Experimental Graph II

5

4 4

6 10

17

4

4

3
3

n13

n11

1

3

3

3

n15

4

4

3

4
4

5

7

Four cost functions were used in the experiments. These
are shown in figure 6. These cost functions are all functions
of the utilization of the capacity of the network edge. It
should be noted that figure 6c is a constant implying that
the cost is independent of edge utilization.

The equations for figures 6a to 6d are given by:

4.3. Results for Problem 1
Tables 1, 2 and 3 contain the results of experiments for

constant α and β for the two experimental graphs with
different initial edge utilizations for the path finding
problem. Tables 4, 5 and 6 contain the results of
experiments where α and β were allowed to adapt during
search. The mean and standard deviations of run times are
reported in tables 1 to 6.

Table 1: 0% Initial Utilization, αβ constant
graph1 graph2

Mean (secs) 25.12 31.22
6a std dev. (secs) 2.68 3.42

Mean (secs) 32.67 37.94
6b std dev. (secs) 4.11 4.62

Mean (secs) 27.56 30.22
6c std dev. (secs) 2.76 3.34

Mean (secs) 22.18 25.89
6d std dev. (secs) 2.07 3.01

Table 2: 30% Initial Utilization, αβ constant
graph1 graph2

Mean (secs) 26.11 32.21
6a std dev. (secs) 2.99 3.98

Mean (secs) 27.33 31.43
6b std dev. (secs) 3.22 4.76

Mean (secs) 22.99 29.16
6c std dev. (secs) 2.41 3.11

Mean (secs) 22.18 25.89
6d std dev. (secs) 2.07 3.01

Table 3: 50% Initial Utilization, αβ constant
graph1 graph2

Mean (secs) 25.55 32.28
6a Std dev. (secs) 2.71 3.72

Mean (secs) 33.69 38.96
6b Std dev. (secs) 4.21 4.81

Mean (secs) 33.11 35.65
6c Std dev. (secs) 3.99 4.29

Mean (secs) 22.18 25.89
6d Std dev. (secs) 2.07 3.011)8()(],1,0[:6

1)(],1,0[:6

)4/1418()(,75.025.0:6

19)(],1,0[:6

3 ++=∈∀
=∈∀

−=<<
+=∈∀

xxxfxd

xfxc

xxfxb

xxfxa

Figure 6: Cost functions

10

10

1

(a)
10

10

1

(b)

10

10

1

(d)
10

10

1

(c
)

Table 4: 0% Initial Utilization, αβ adaptive
graph1 graph2

Mean (secs) 18.91 23.99
6a Std dev. (secs) 1.52 2.98

Mean (secs) 28.11 28.01
6b Std dev. (secs) 2.31 2.41

Mean (secs) 20.09 24.22
6c Std dev. (secs) 1.55 2.11

Mean (secs) 17.1 19.67
6d Std dev. (secs) 1.39 1.65

Table 5: 30% Initial Utilization, αβ adaptive
graph1 graph2

Mean (secs) 19.11 24.11
6a Std dev. (secs) 1.6 2.77

Mean (secs) 21.2 25.22
6b Std dev. (secs) 1.91 3.51

Mean (secs) 17.01 22.11
6c Std dev. (secs) 1.61 2.41

Mean (secs) 17.1 19.67
6d Std dev. (secs) 1.39 1.65

Table 6: 50% Initial Utilization, αβ adaptive
graph1 graph2

Mean (secs) 20.18 24.91
6a Std dev. (secs) 2.01 2.22

Mean (secs) 23.99 28.99
6b Std dev. (secs) 2.31 2.54

Mean (secs) 24.95 27.11
6c Std dev. (secs) 2.88 3.11

Mean (secs) 22.18 25.89
6d Std dev. (secs) 2.07 3.01

By comparing tables 1 and 4, 2 and 5, 3 and 6, the results
indicate that the ASGA system is clearly superior to the
simple AS. ASGA is typically 25% faster than the simple
AS in finding paths for the two experimental graphs across
the range of initial utilizations chosen. The standard
deviations for search times also decrease when comparing
the adaptive to the non-adaptive systems, again indicating
that adaptation of α,β values has improved predictability of
the search process.

The results for 0, 30 and 50% initial edge utilization for
cost function 6c being the same in tables 1, 2 and 3 can be
explained by the fact that this cost function does not vary
with the utilization of the network edges. By the same
argument, tables 4, 5 and 6 show no variation in search
times for cost function 6c.

The mean edge utilization results are not included here
due to space restrictions. However, cost function 6d

provided the best overall results when reviewing the
standard deviation on edge utilization.

4.4. Results for Problem 2
Tables 7 and 8 contain the results of experiments for
constant and adaptive α,β for the two experimental graphs
respectively. In both of these tables an initial edge
utilization of zero was used. Results for an initial edge
utilization of 30% and 50% are not presented are they
exhibit similar patterns to those provided for problem one
and provide no further insight into the effects of the cost
function chosen.

Table 7: 0% Initial Utilization, αβ constant
graph1 graph2

Mean (secs) 62.91 80.01
6a std dev. (secs) 6.99 9.01

Mean (secs) 82.01 99.11
6b std dev. (secs) 11.1 11.91

Mean (secs) 70.65 80.11
6c std dev. (secs) 7.01 9.91

Mean (secs) 56.99 65.85
6d std dev. (secs) 5.61 7.91

Table 8: 0% Initial Utilization, αβ adaptive
graph1 graph2

Mean (secs) 45.31 55.91
6a std dev. (secs) 3.41 7.15

Mean (secs) 67.41 67.19
6b std dev. (secs) 5.45 5.55

Mean (secs) 47.34 56.67
6c std dev. (secs) 3.51 5.01

Mean (secs) 41.4 42.99
6d std dev. (secs) 3.03 3.97

Once again, comparing tables 7 and 8, the adaptive
system is clearly shown to be superior to the simple AS.

4.5. Results for Problem 3
Tables 9 and 10 contain the results of experiments for
constant and adaptive α,β for the two experimental graphs
respectively for the problem of finding a cyclical path
between two nodes in the network. In both of these tables
an initial edge utilization of zero was used. Results for an
initial edge utilization of 30% and 50% are again not
presented are they exhibit similar patterns to those provided
for problem one and thus provide no further insight into the
effects of the cost function chosen.

Table 9: 0% Initial Utilization, αβ constant
graph1 graph2

Mean (secs) 51.5 64.98
6a Std dev. (secs) 5.94 7.11

Mean (secs) 68.91 76.98
6b Std dev. (secs) 8.97 10.01

Mean (secs) 60.12 64.09
6c Std dev. (secs) 5.92 7.98

Mean (secs) 48.3 56.74
6d Std dev. (secs) 4.91 6.71

Table 10: 0% Initial Utilization, αβ adaptive
graph1 graph2

Mean (secs) 38.56 49.02
6a Std dev. (secs) 3.01 5.87

Mean (secs) 57.6 55.37
6b Std dev. (secs) 4.32 4.58

Mean (secs) 43.09 49.41
6c Std dev. (secs) 3.07 4.76

mean (secs) 34.12 41.56
6d std dev. (secs) 2.9 3.21

As tables 9 and 10 clearly show, the adaptive system
outperforms the AS with constant α and β values and
exhibits improvements that are similar to those observed for
problems one and two.

It should be noted that when the search for a path starts,
the cost element of the probability function dominates the
calculation of pk(i,j), and an almost greedy heuristic comes

into play, i.e. the least cost edge is probabilistically chosen.
The actual value of α is relatively unimportant, as only a
small amount of pheromone is present on the edges.
Therefore, the main factor influencing choice of links is the
actual cost of that edge. As routes are found, pheromone is
laid on the edges that form that path. The amount of
pheromone laid is inversely proportional to the total cost of
the path found, and acts as a global measure of ‘goodness’.
As the quantity of pheromone rises, this brings the
reinforcement part of the probability function, pk(i,j), into

play. The sensitivity to pheromone, α, influences the choice
of edges, and edges with higher pheromone concentrations
are more likely to be chosen. It can easily be seen,
therefore, that the importance of edge cost and pheromone
concentration varies throughout the search process and that
adaptation of the appropriate sensitivity parameters likely
to be desirable.

Finally, allowing negative values for α and β has
introduced the ability for agents to choose low pheromone
concentration, high cost, edges. This has improved the
ability of the system to recover from situations where agents
have laid down large concentrations of pheromone on a
non-optimal path early on in the search process.

5. Conclusions
This paper has described an adaptive agent system that
solves three distinct path-finding problems in networks.
This paper has demonstrated that the AS can be used to
solve hard combinatorial optimization problems as
represented by Steiner vertex identification and shortest
cycle determination. Our experimental results have clearly
demonstrated that self-adaptation of control parameters has
led to improvements in system performance.

6. Future Work
Work is ongoing to apply the ASGA system to the TSP and
asymmetric TSP as proposed in [Dorigo et al, 96]. Also,
[Gambardella and Dorigo, 95] have proposed Ant-Q, a
family of combinatorial optimization algorithms that
represent the synthesis of Q-Learning and AS. Future work
will extend ASGA to incorporate Ant-Q algorithms in
order to determine the utility of adaptation in this new
family of search algorithms.

References
Beckers R., Deneuborg J.L and Goss S. 1992. Trails and U-

turns in the Selection of a Path of the Ant Lasius Niger.
In J. theor. Biol. Vol. 159, pp. 397-415.

Beni G., and Wang J. 1989. Swarm Intelligence in Cellular
Robotic Systems, Proceedings of the NATO Advanced
Workshop on Robots and Biological Systems, Il Ciocco,
Tuscany, Italy.

Bullnheimer B., R.F. Hartl and C. Strauss. 1997, Applying
the Ant System to the Vehicle Routing Problem. 2nd
Metaheuristics International Conference (MIC-97),
Sophia-Antipolis, France.

Colorni A., M. Dorigo & V. Maniezzo. 1992. An
Investigation of Some Properties of an Ant Algorithm.
Proceedings of the Parallel Problem Solving from Nature
Conference (PPSN 92), Brussels, Belgium, R.Männer
and B.Manderick (Eds.), Elsevier Publishing, 509-520.

Costa D. and A. Hertz. 1997. Ants Can Colour Graphs.
Journal of the Operational Research Society, 48, 295-
305.

Di Caro G. and Dorigo M. 1997. AntNet: A Mobile Agents
Approach to Adaptive Routing. Tech. Rep. IRIDIA/97-
12, Université Libre de Bruxelles, Belgium, 1997.

Dijkstra E.W. 1959. A Note on Two Problems in
Connexion with Graphs In Numerische Mathmatik vol.
1.

Dorigo M., V. Maniezzo & A. Colorni. 1991. The Ant
System: An Autocatalytic Optimizing Process. Technical
Report No. 91-016, Politecnico di Milano, Italy.

Dorigo M., V. Maniezzo & A. Colorni. 1996. The Ant
System: Optimization by a Colony of Cooperating

Agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26, 1, 29-41

Franks N.R. 1989. Army Ants: A Collective Intelligence,
Scientific American, Vol. 77.

Fitzgerald T.D., Peterson S.C. 1988. Cooperative foraging
and communication in caterpillars, Bioscience, 38, pp.
20-25.

Gambardella L.M. & M. Dorigo. 1995. Ant-Q: A
Reinforcement Learning Approach to the Traveling
Salesman Problem. Proceedings of ML-95, Twelfth
International Conference on Machine Learning, Tahoe
City, CA, A. Prieditis and S. Russell (Eds.), Morgan
Kaufmann, 252-260.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

Goss S., Beckers R., Deneubourg J.L., Aron S., Pasteels
J.M. 1990. How Trail Laying and Trail Following Can
Solve Foraging Problems for Ant Colonies, in Hughes
R.N. (ed.) NATO ASI Series, Vol. G 20, Behavioural
Mechanisms of Food Selection, Springer Verlag, Berlin.

Grassé P.P. 1959. La reconstruction du nid et les
coordinations inter-individuelles chez Bellicoitermes
natalenis et Cubitermes sp. La theorie de la stigmergie:
Essai d'interpretation des termites constructeurs. In
Insect Societies, Vol. 6, pp. 41-83.

Hölldobler B. and Wilson E.O. 1994. Journey to the Ants.
Bellknap Press/Harvard University Press, 1994.

Kuntz P. and D. Snyers. 1994. Emergent Colonization and
Graph Partitioning. Proceedings of the Third
International Conference on Simulation of Adaptive
Behavior: From Animals to Animats 3, MIT Press,
Cambridge, MA.

Leerink L.R., S.R. Schultz and M.A. Jabri. 1995. A
Reinforcement Learning Exploration Strategy based on
Ant Foraging Mechanisms. Proceedings of the Sixth
Australian Conference on Neural Networks, Sydney,
Australia, 1995.

Langton, C.G. 1987. Artificial Life, Proceedings of an
Interdisciplinary Workshop on the Synthesis and
Simulation of Living Things, Los Alamos, New Mexico,
Addison Wiley.

Maniezzo V., A. Colorni and M. Dorigo. 1994. The Ant
System Applied to the Quadratic Assignment Problem.
Tech. Rep. IRIDIA/94-28, Université Libre de Bruxelles,
Belgium.

Mann, J., White, T., and Turner, J. 1995. Optimal Route
Finding in ATM Networks Using Genetic Algorithms, in
Proceedings 7th BNR Design Forum, December, 1995.

Shapiro, J. A. 1988. Bacteria as multi cellular organisms,
Scientific American, pp. 82-89.

Schoonderwoerd R., O. Holland and J. Bruten. 1997. Ant-
like Agents for Load Balancing in Telecommunications
Networks. Proceedings of Agents ’97, Marina del Rey,
CA, ACM Press pp. 209-216, 1997.

Stützle T. and H. Hoos. 1997. The MAX-MIN Ant System
and local Search for Combinatorial Optimization
Problems: Towards Adaptive Tools for Global
Optimization. 2nd Metaheuristics International
Conference (MIC-97), Sophia-Antipolis, France - July
21-24, 1997.

Taillard E. and L. M. Gambardella. 1997. An Ant
Approach for Structured Quadratic Assignment
Problems. 2nd Metaheuristics International Conference
(MIC-97), Sophia-Antipolis, France.

