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Abstract
This paper describes how biologically-inspired
agents can be used to solve control and
management problems in Telecommunications.
These agents, inspired by the foraging behavior
of ants, exhibit the desirable characteristics of
simplicity of action and interaction. The
collection of agents, or swarm system, deals only
with local knowledge and exhibits a form of
distributed  control with agent communication
effected through the environment. In this  paper
we explore the application of ant-like agents to
the problem of routing in circuit switched
telecommunication networks.

Introduction
The notion of complex collective behavior emerging from
the behavior of many simple agents and their interactions
is central to the ideas of Artificial  Life [Langton 87].
There are many examples in Nature of social systems
where individuals possess simple capabilities which,
when compared to their collective behaviors, are much
more complex. Such systems span many levels of
evolutionary complexity, from simple bacteria [Shapiro
88], to ants [Goss et al, 90], [Franks 89], caterpillars
[Fitzgerald and Peterson 88] and beyond.

The continuing investigation and research of naturally-
occurring social systems offers the prospect of creating
artificial systems that are controlled by emergent
behavior and promises to generate engineering solutions
to distributed systems management problems found, for
example, in telecommunications networks.

Controlling distributed systems such as those found in
telecommunications networks by means of a single
central controller, or requiring each controlling entity to
have a global view of the system, has many
disadvantages. In the case of the single controller, a

considerable quantity of information must be
communicated from the network to the controller,
necessitating the sending of data from all parts of the
network to the centralized control point. These systems
scale badly due to the rapid increase in the quantity of
data that must be transferred and processed to the central
point as the network increases in size. Such systems
invariably have to deal with data that is time delayed, i.e.
stale. Providing a single point of control also provides for
a single point of failure, a highly undesirable
characteristic of any system. In the case where multiple
global views are constructed and maintained, the problem
of synchronization of such views can lead to instability
and can lead to excessive use of network resources. The
optimal design of a centralized controller is often
difficult to achieve in that design decisions must be made
based upon a static (and idealized) view of the way in
which demands on resources in the network are likely to
change. Decentralized control mechanisms need not
suffer from the above problems and potentially can take
advantage of local knowledge for improved use of
network resources.

In this paper we describe the essential principles of
Swarm Intelligence (SI) and how an understanding of the
foraging behaviors of ants [Beckers et al 92] has led to
new approaches to control in telecommunications
networks.

This paper consists of seven subsequent sections. In the
next section, a brief overview of Swarm Intelligence and
Ant Colony search is presented. There then follows a
brief description of the important attributes of the routing
problem from the perspective of this paper. The next
section describes the Routing By Ants system and
provides an overview of the algorithm used.
Experimental setup and results are then described and
the final sections provide conclusions and future work
that is planned with this system and derivatives of it.



Swarm Intelligence and the Ant Colony
Swarm Intelligence [Beni and Wang 89] is a property of
systems of unintelligent agents of limited individual
capabilities exhibiting collectively intelligent behavior.
An agent in this definition represents an entity capable of
sensing its environment and undertaking simple
processing of environmental observations in order to
perform an action chosen from those available to it.
These actions include modification of the environment in
which the agent operates. Intelligent behavior frequently
arises through indirect communication between the
agents, this being the principle of stigmergy [Grasse’ 59].
It should be stressed, however, that the individual agents
have no explicit problem solving knowledge and
intelligent behavior arises as a result of the actions of
societies of such agents.

Individual ants are behaviorally simple insects with
limited memory and exhibiting activity that has a random
component. However, collectively ants manage to
perform several complicated tasks with a high degree of
consistency. Examples of sophisticated, collective
problem solving behavior have been documented [Frank
89; Hölldobler and Wilson 94] including:

• Forming bridges
• Nest building and maintenance
• Cooperating in carrying large items
• Finding the shortest routes from the nest to a food

source
• Regulating nest temperature within a one degree

Celsius range
• Preferentially exploiting the richest source of food

available.

In the examples listed above, two forms of stigmergy
have been observed. Sematectonic stigmergy involves a
change in the physical characteristics of the environment.
Ant nest building is an example of this form of
communication in that an ant observes a structure
developing and adds its ball of mud to the top of it. The
second form of stigmergy is sign-based. Here something
is deposited in the environment that makes no direct
contribution to the task being undertaken but is used to
influence the subsequent behavior that is task related.

Sign-based stigmergy is highly developed in ants. Ants
use highly volatile chemicals called pheromones (a
hormone) to provide a sophisticated signaling system.
Ants foraging for food lay down quantities of pheromone
marking the path that it follows with a trail of the
substance. An isolated ant moves essentially at random

but an ant encountering a previously laid trail will detect
it and decide to follow it with a high probability and
thereby reinforce it with a further quantity of pheromone.
The collective behavior which emerges is a form of
autocatalytic behavior where the more the ants follow the
trail the more likely they are to do so. The process is
characterized by a positive feedback loop, where the
probability that an ant chooses any given path increases
with the number of ants choosing the path at previous
times.

The use of ant foraging behavior as a metaphor for a
problem-solving technique is generally attributed to
Dorigo [Dorigo et al 91]. However, since his early work
on the Travelling Salesman Problem (TSP) and
Asymmetric TSP, the technique has been applied to
several other problem domains. These include the
Quadratic Assignment Problem (QAP) [Maniezzo et al
94, Taillard et al 97], graph coloring [Costa and Hertz
97], vehicle routing [Bullnheimer et al 97] and, as we
shall see in the next section, communications network
routing.

Routing
Many strategies have been proposed and researched for
network routing. For the purposes of this paper, two
characteristics of such strategies are considered
important.

Firstly, networks are either packet or circuit switched. A
packet switched network is one in which routing
decisions are made on a packet-by-packet basis. In this
case, no fixed connections are made and resources are
not reserved. In a circuit switched network a connection
is maintained for the duration of a session between two or
more entities. Resources are allocated to the circuit for
the duration of the session.

Secondly, network routing can be either static or
adaptive. Static routing usually employs shortest path
algorithms such as provided by Dijkstra's algorithm
[Dijkstra 59] in order to compute routing tables that are
subsequently downloaded to the network. Adaptive
routing uses link cost metrics, which are functions of the
utilization of network resources in order to force changes
in routing during periods of network congestion.

Considerable information on routing can be found in
[Schwarz 89] and [Tanenbaum 88].

The motivation for exploiting the ant metaphor for
routing in telecommunications networks arises from the
fact that routing systems frequently depend upon global



information for their efficient operation. Ant systems do
not need such global information, relying instead upon
pheromone traces, or rather their digital equivalent, that
are laid down in the network as the ant, or agent, moves
through the network. Global information is frequently out
of date and transmission of the information required from
one node to all others consumes considerable network
resources. Ideally, we would like to have the network
adapt routing patterns to take advantage of free resources
and move traffic if possible.  This is particularly desirable
in broadband networks where traffic patterns change
rapidly and maintaining a global view of available
network resources is almost impossible.

To date, three applications of the ant metaphor in the
domain of routing have been documented [White 97],
[Schoonderwoerd et al 97] and [Di Caro and Dorigo 97].
Schoonderwoerd’s work embraces routing in the circuit
switched networks while Di Caro and Dorigo deal with
packet switched networks. Di Caro and Dorigo, in
particular, provide compelling experimental evidence,
based upon on simulation, as to the utility of ant search
in the network routing problem domain by comparing
ant-based routing with the current and proposed routing
schemes used in NSFNET. This paper describes the
approach of  [White 97]. This paper does not propose
that this ant-based system be employed in networks as
described but presents a model through which the
interplay of model parameters can be explored, thereby
increasing the utility and generality of the results
obtained. For example, the use of a cost function for the
network links rather than round trip delay measurements
(as are used in Di Caro and Dorigo’s experiments) allows
more general statements to be made regarding the
experimental results. Also, this system is more likely to
be of use in a network planning or management context
such as is required in a SONET transmission network
rather than the control domain as suggested by Di Caro
and Dorigo.

Ant Routing
There are three agent types in the Routing By Ants
(RBA) system. These are explorers, allocators and
deallocators. Each agent type possesses a small memory
to store the route being traversed and the constraints on
routing. Explorer agents exhibit the foraging behavior of
ants and preferentially follow trails of pheromones laid
down by previous explorers. Constraints on routing allow
for the inclusion or exclusion of specific nodes on the
route, or the exclusion or inclusion of certain links. The
Allocator agents traverse the path determined by explorer
agents and allocate network resources on the nodes and
links used in the path.  Similarly, when the path is no

longer required, a deallocator agent traverses the path
and deallocates the network resources used on the nodes
and links.

The system works in the following way. A connection
request is generated at a given node, the source. The
connection request is either a point to point (P2P) or
point to multi-point (P2MP) request. For P2P requests a
new species of ant (agent) is created and m are sent out
into the network. For a P2MP request with n
destinations, nm agents of a new species are created and
sent out into the network, with m being sent to each of
the n destinations.  These explorer agents execute the
following pseudo-code algorithm:

1. Initialize the route finding simulation
Set t:= 0
For every edge (i,j) set an initial value Tijk(t)

of  zero for trail intensity. Place m ants on the source
node. {Create new explorers agents at a frequency ef }

2. Set s:= 1 { tabu list index }
for k:= 1 to m do

Place starting node of the kth ant in Tabuk[s].

3. Repeat until destination reached:
Set s := s + 1
For k:=1 to m do

Choose node j to move to with probability pij
k (t)      

Move the kth ant to node j.
Update explorer route cost: rk = rk + C(i,j)

If (rk > rmax) then

Kill explorerk
Insert node j in Tabuk[s].

At destination go to 4.
4. While s > 1

Traverse edge Tabuk[s].

Tijk(t) = Tijk(t) + phk
s := s - 1

5. At source node do:
If  the path in Tabuk is the same as p% of paths in

PathBuffer then Create and send an allocator agent
 If t > Tmax then

Create and send an allocator agent

In the above algorithm, the following symbols are used:
• Tij(t) is the quantity of pheromone present on the

link between the ith and jth nodes,
• C(i,j) is the cost associated with the link between the

ith and jth nodes.



• rk is the cost of the route for the kth explorer agent.

•  Tabuk is the list of edges traversed.

• Tmax is the maximum time that is allowed for a
path to emerge.

• PathBuffer is the array of paths obtained by the (up
to m) explorer agents.

• rmax is the maximum allowed cost of a route.

• phk is the quantity of pheromone laid by the kth

explorer agent.

• pij
k (t) is the probability that the kth agent will

choose the edge from the ith to the jth node as its
next hop.

The probability with which an explorer agent (k) chooses
a node j to move to when currently at the ith node at time
t is given by:

pij
k (t) = [Tijk(t)]α[C(i,j)]-ß

 
/ Nk

Nk = Σj in (S(i)- Tabuk) [Tijk (t) ]α[C(i,j)]  -ß

where α and β are control constants and determine the
sensitivity of the search to pheromone concentration and
link cost respectively. Nk 

is simply a normalization

factor that makes pij
k (t) a true probability. S(i) is the set

of integers, {l} such that there exists a link between the
ith and lth nodes.

Explorer agents are created at a given frequency ef and
continue to be created and explore the network during the
lifetime of the connection. In this way it is possible to
have recovery from node or link failure and (potentially)
have the system re-route connections in order to
overcome temporary congestion situations. An alternate
solution to the node or link failure is to compute multiple
node and link diverse paths from source to destination.
This is currently being researched and will be reported in
a future publication.

Pheromone levels also decrease with time by the process
of evaporation. Left alone to decay, and with no
reinforcement by other ants, the pheromone levels drop at
a rate given by r. In our system the evaporation was
simulated but in a real engineering solution this process
might be effected by mobile evaporation agents
traversing the network.

When explorer agents reach their destination they
backtrack along the route chosen and drop pheromone in
order to mark the path. Explorer agents that are
searching for P2MP paths use the same pheromone and

so tend to reinforce partial paths consequently identifying
multi-cast nodes within the network. Constraint handling
in the RBA system is important because of the inability
of certain nodes in the network to perform multi-casting.

Upon arrival back at the source node, a decision is made
whether or not to send an allocator agent. The decision is
made based upon m previous allocator agents’ paths. If p
percent of the agents follow the same path, the path is
said to have emerged. An allocator agent is then created
and enters the network and allocates network resources
along the route. In the case of P2MP allocator agents, the
decision to create and send one is made based upon
whether the spanning trees chosen are the same.  It
should be noted that P2MP explorer agents are searching
for the lowest cost, spanning tree within the network for
the source and destinations chosen and this problem is
known to be NP hard. Another incidental but convenient
property of the P2MP path search is that new connections
can be added dynamically as remote sessions come
online, as would typically be the case in a distance
learning application. Potentially the entire spanning tree
found by the P2MP agents might then change as a more
efficient multi-cast solution is found.

Allocator agents traverse the paths indicated by the
highest concentrations of the pheromones dropped by
their associated explorer agents. P2MP allocator agents
behave slightly differently when compared to their P2P
counterparts in that they consume resources only once on
a node or link during the allocation process.

It is possible that network resources have already been
allocated by the time the allocator agent is sent. In this
situation, the allocator agent backtracks to the source
node rolling back resource allocation and decreasing
pheromone levels such that a later explorer agent will not
tend to follow this path. A decision to re-send an
allocator agent is made after a back-off period has been
observed. During the back off period explorer ants
continue to search for alternative routes.

Low values of α indicate that the search process is
insensitive to pheromone concentration, whereas low
values of β indicate that link cost is unimportant. The
balancing of these two parameters strongly affects the
efficiency and stability of the search process.

Experimental Setup
Several networks were used during the evaluation of the
RBA system. A small example is shown in figure 1.
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Figure 1: A Simple Example Network
The labels on the links represent available capacity for
connections. Larger networks of up to 200 nodes were
used in several experiments, these networks being
examples of large transmission networks currently being
planned.

In order to explore the sensitivity of the search algorithm,
routes for all possible source-destination connection
requests were computed for a range of α and β values.
Routes were computed 100 times in order to determine
the variation of search times. Values of α,β in the range
[1,10] were used to investigate the sensitivity of the
search to these parameters. Table 1 shows the values of
principal parameters for the system.

Parameter Value
Agent creation frequency Every 10 cycles
Quantity of pheromone dropped 10 units
Emergence criterion 90% follow a path
Number of agents created 15
Path buffer size 40 agents
Pheromone evaporation rate 1.0 units/cycle
Maximum search time 300 cycles

Table 1: Experimental Parameters

Results and Discussion
When the algorithm starts, the cost part of the probability
function is important, and the greedy heuristic comes
into play. The actual value of α is unimportant, as only a
small amount of pheromone (approaching zero) is
present on the links, therefore the only factor influencing
choice of links is actual cost on that link. As routes are
found, pheromone is laid on the links that form that path.
The amount of pheromone laid is inversely proportional
to the total cost of the route, and acts as a global measure
of ‘goodness’. This brings the reinforcement part of the
probability function into play. The sensitivity to
pheromone, α, influences the choice links, and links with
more pheromone are more likely to be chosen.

α,β 2,1 2,2 4,2 8,2

Minimum 75 75 130 130
Maximum 400 220 195 190
Mean 220 175 159 150
Std Dev. 45 25 14 10

Table 2: Results
In the first column of the results table high standard
deviations on search times implies that the confidence in
a path is not high, and the system continues to use the
greedy heuristic to explore other paths. The second and
third columns of the results table show similar results for
minimum, maximum and mean, but with standard
deviation decreasing. The system finds results quickly,
and reinforces good solutions. However, confidence is at
a level such that other solutions are not rejected, and
exploration continues. These seem to be the best sets of
results. The final column in the results table show a fast,
almost deterministic algorithm. This makes it
undesirable for dynamic routing.

It is important that other solutions are explored and
evaluated, as this is a stochastic approach. Reducing the
standard deviation shows that the algorithm is more
deterministic, which is not desirable. On the other hand,
too high a standard deviation is also undesirable, as good
solutions are not sufficiently reinforced.

Observations and simple analysis show that with high
values of β, the system becomes ‘locked into’ the solution
found first. This leads to problems later when bandwidth
is removed from a link on that path. The system
reorganizes, but when the bandwidth is reinstated, the
previous solution, which is typically the best solution, is
not found as the high sensitivity to pheromone is forcing
the choice of paths where ants have previously been.

The times for route emergence varied considerably with
the values chosen for α and β. Values of α=2 and
β=2 were chosen as a reasonable compromise between
exploitation of an emerging path and exploration of other
paths in the network.

As a result of the sensitivity of the search process to
parameter settings, the search process should probably be
made adaptive. The values α and β should not fixed for
the all agents but allowed to vary based upon the
effectiveness of the search resulting from them. This
enhancement to the basic system is currently undergoing
investigation and will be reported in a subsequent
publication.

Summary



This paper has described a search process that solves the
routing problem for networks containing both point to
point and point to multi-point connection requests. The
process requires three agent types and is dynamic in
nature, thereby allowing the potential for re-routing in
situations where local congestion occurs. An interesting
property of the process is the potential for reconfiguration
of multi-cast path solutions as new sessions come online
or existing sessions terminate.  Results have shown that
shortest path routes can be quickly computed and that
response to failure events in the network is rapid.

Future Work
The system is currently being extended to allow for
interactions between pheromone species. In the multi-
pheromone ant colony system (mPAC), a chemistry &, is
defined for the system:

ci: s1S1 + … + smSm → s1
’S1

’  + … + sm
’Sm

’

The chemical reactions can be defined link by link,
globally defined and multiple reactions are possible & =
{ci }. Each reaction has an associated reaction rate

(defined by Arrhenius’ equation), i.e. temperature
dependent. It is envisaged that the addition of such
chemistry will provide for a mechanism to define
behavior-based network management and control
systems.
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