
Abstract

This paper describes a novel method of achieving load bal-
ancing in telecommunications networks. A simulated net-
work models a typical distribution of calls between arbitrary
nodes; nodes carrying an excess of traffic can become con-
gested, causing calls to fail. In addition to calls, the network
also supports a population of simple mobile agents with
behaviours modelled on the trail laying abilities of ants. The
agents move across the network between arbitrary pairs of
nodes, selecting their path at each intermediate node accord-
ing to the distribution of simulated pheromones at each node.
As they move they deposit simulated pheromones as a func-
tion of their distance from their source node, and the conges-
tion encountered on their journey. Calls between nodes are
routed as a function of the pheromone distributions at each
intermediate node. The performance of the network is meas-
ured by the proportion of calls which fail. The results are
compared with those achieved by using fixed shortest-path
routes, and also by using an alternative algorithmically-
based type of mobile agent. The ant-based system is shown
to drop fewer calls than the other methods, while exhibiting
many attractive features of distributed control.

1 Introduction
This paper examines the potential for using mobile software
agents modelled on ants for load balancing in telecommunications
networks. It is organised as follows:
• load balancing is described

• a previous attempt at using mobile agents for load balancing is
summarised

• the potential appropriateness of ant based models is noted

• an ant based model is derived from a principled minimalist
standpoint

• the model is tested on a network simulation

• the load balancing abilities of the ant based model are ana-
lysed and compared with those of an alternative mobile agent
model.
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1.1  Load balancing
For economic and commercial reasons, circuit switched telecom-
munications networks are equipped not with a level of equipment
which will guarantee successful call connection under all possible
circumstances, but with some lower level which will give accepta-
ble performance under most conditions of use. If there is some sig-
nificant change in the conditions - for example, if the total call
volume at any time is unusually high, or if some particular loca-
tion is suddenly the origin or destination of an unusually large vol-
ume of calls - then these capacity limitations often lead to the
system failing with calls unable to be connected.

Calls between two points are typically routed through a
number of intermediate switching stations, or nodes, each with
limited capacity; if an intermediate node is already fully occupied,
no new call can be made through it, and any attempt to make such
a call will fail. However, in a large network, there are many possi-
ble routes between two given points. It is therefore possible to
avoid or relieve actual or potential local congestion by routing
calls via parts of the network which have, or are likely to have,
spare node capacity. Load balancing is essentially the construction
of call-routing schemes which distribute the call traffic over the
system in such a way that nodes are rarely fully occupied and fail-
ures in call placement occur only infrequently. Such schemes can
either be static or dynamic: a static routing scheme fixes on a par-
ticular set of 'good' routes, and maintains them regardless of any
variations in congestion; a dynamic routing scheme changes the
routes from time to time as a function of previous and ongoing
congestion.

Before looking at methods of load balancing, it will be useful
to explain how routing is usually organised. There are two broad
possibilities. In the first, a call from a node A to a node Z could be
assigned a route to Z specifying at the outset the exact sequence of
nodes to be visited on the way. In the second, the call could be
tagged with the destination 'Z' and passed from A to the neighbour
node specified by A as the one used for destination Z - say node D.
D would read the tag and pass the call to whichever of its neigh-
bour nodes it uses for traffic to Z, and so on, until the call reaches
Z. This paper deals only with the second method, which is in
widespread use. The structure within each node specifying the
next node to be used for traffic for each destination is known as a
routing table. Clearly, the set of routing tables within a given net-
work must be complete, with a valid route for every possible call
within the network. If every cell in every routing table contains an
entry giving the address of a neighbour node, then every invalid
route must terminate in a loop. An attempt to make a call on a
looped route will be relayed round the loop until it uses all the
capacity within one of the nodes within the loop, causing the call
to fail, and temporarily interfering with the available capacity on
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all nodes within the loop.
Managing a dynamic routing scheme by means of a single

central controller has several disadvantages. The controller usually
needs current knowledge about the entire system, necessitating
communication links from every part of the system to the control-
ler. These central control mechanisms scale badly, due to the rapid
increase of processing and communication overheads with system
size. Failure of the controller will often lead to failure of the com-
plete system. There is the additional practical commercial require-
ment that centrally controlled systems may need to be owned by
one single authority.

1.2  Appleby and Steward's Mobile Agents
Some form of distributed control seems natural for a system which
essentially consists of a number of linked computational nodes.
The case for implementing conventional distributed control by a
number of static controllers was briefly reviewed and dismissed by
Appleby and Steward (1994). As an alternative, they proposed the
use of larger numbers of mobile software agents, claiming that this
may produce benefits in robustness. Although their development
of this idea included some experimental work, it was essentially a
proof of concept study, and should not necessarily be taken to rep-
resent an advance on current methods of network routing.

In their mobile agents approach, there are two `species' of
mobile agents: load management agents and parent agents. The
lowest level of control is provided by the load management agents.
Each such agent is launched from a particular node (its source
node) and moves around the network, finding the current best
routes from all nodes in the network to the source node using a
clever adaptation of Dijkstra's shortest path algorithm (Dijkstra,
1959), and updating routing tables accordingly. The best route is
defined as that which has the greatest minimum spare capacity of
all possible routes; the aim is to distribute traffic evenly over the
network to avoid high local loadings.

Parent agents provide the second level of control. They travel
over the network, gathering information about which nodes are
generating most traffic, and which nodes are more congested than
others. Using heuristics, a parent agent can decide that network
management at certain locations is needed to relieve congestion; it
then travels to those locations to launch load agents. Mechanisms
are proposed for regulating the numbers of load agents and parent
agents to ensure that the number present is appropriate for the pre-
vailing conditions, given that agents may crash, and that the
requirements for agents may change as the network congestion
comes and goes. Appleby and Steward simulated the effects on a
network of rather limited traffic under two conditions: with fixed
routing tables giving the shortest routes; and with routing tables
subject to amendment by the mobile agents. The fixed routing pro-
duced severe local congestion, whereas the mobile agents success-
fully prevented congestion by spreading traffic more evenly across
the network. However, Appleby and Steward present few details
and only a single quantitative example.

Arguing from the standpoint of providing a programming dis-
cipline, Appleby and Steward proposed to achieve robustness with
respect to 'the failure of an agent or the failure of a component in
the distributed system' by following three precepts:
• there should be no direct inter-agent communication

• the agents should be present in reasonably large numbers

• the agents should be able to dynamically alter their task allo-
cations and number
Their implementation rejected the ideas of distributed artificial

intelligence, and instead drew on the principles of the Subsump-
tion Architecture (Brooks, 1986) to support the idea of using rela-

tively simple agents to achieve 'complex, intelligent behaviour...by
exploiting the interaction of a simple control system with a com-
plex environment'. However, their agents are essentially rooted in
the methods of artificial intelligence, in that they are computation-
ally based, using specialised and precise algorithms, maintaining
elaborate records, and using complex sets of carefully crafted heu-
ristics for decision making. We agree with their analysis, but pro-
pose the use of a rather different metaphor for the mobile agents:
the behaviour of social insects such as ants.

1.3  The Abilities of Ants
Individual ants are in some ways very unsophisticated insects.
They have a very limited memory and exhibit individual behav-
iour that appears to have a large random component. Acting as a
collective, however, ants manage to perform a variety of compli-
cated tasks with great reliability and consistency. Examples of col-
lective behaviours that have been observed in several species of
ants can be found in (Hölldobler & Wilson, 1994) and (Franks,
1989). These behaviours emerge from the interactions of large
numbers of individual ants with one another and with their envi-
ronment. In many cases, the principle of stigmergy (Grassé, 1959)
is used. Stigmergy is a form of indirect communication through
the environment. Like other insects, ants typically produce spe-
cific actions in response to specific local environmental stimuli,
rather than as part of the execution of some central plan. If an ant's
action changes the local environment in a way that affects one of
these specific stimuli, this will influence the subsequent actions of
ants at that location. Ants and other social insects have developed
this principle to a high level, mainly by evolving actions which
have no effect on the environment other than influencing the
behaviour of passing ants; the mechanism of choice is the deposi-
tion of a variety of volatile chemical substances, pheromones,
which have specific effects on behaviour. Stigmergy is a general
method of control, and has recently been demonstrated in the
domain of collective robotics (Beckers et al, 1994).

Social insect systems are impressive in many ways, but two
aspects are of particular interest. First, they are outstandingly
robust. They function smoothly even though the colony may be
continuously growing, or may suffer a sudden traumatic reduction
in numbers through accident, predation, or experimental manipu-
lation, or may spontaneously split into two distinct colonies of half
the size (Franks, 1989). They routinely cope with gross and minor
disturbances of habitat, and with seasonal variations in food sup-
ply. Second, they are able to achieve an appropriate balance
between the effort put into many parallel tasks, mainly by control-
ling the number of insects at he location at which the task is taking
place. For example, if a number of breaches are made in a nest, all
will soon be defended by soldiers clustering round them, and all
will soon be under repair by teams of workers. Again, as the num-
bers of brood at different stages change with time, the numbers of
workers caring for each stage will change appropriately.

These observations suggest that it may be possible to use very
simple agents, with little or no memory or computational ability,
to achieve an appropriate balance between a number of competing
activities by interacting with the traces left in the environment by
one another. A network supporting a variety of calls may be seen
as a collection of competing activities. There is also a very obvi-
ous candidate for a suitable mechanism for routing: since the
problem is to do with the routes taken between various locations,
why not exploit some analogue of the main method used by ants -
the laying and following of pheromone trails?



1.4  Trail laying
Depending on the species, ants may lay pheromone trails when
travelling from the nest to food, or from food to the nest, or when
travelling in either direction. They also follow these trails with a
fidelity which is a function of the trail strength, among other varia-
bles. The strength of the trail laid by an ant may be modulated by
internal state or by local circumstances. Since pheromones evapo-
rate and diffuse away, the strength of the trail when it is encoun-
tered by another ant is a function of the original strength, and the
time since the trail was laid. Most trails consist of several superim-
posed trails from many different ants, which may have been laid at
different times; it is the composite trail strength which is sensed
by the ants. Abstractions of these functional characteristics form
the basis of the scheme for load balancing presented here.

1.5  Previous Work
The metaphor of trail laying by ants has previously been success-
fully applied to certain combinatorial optimisation problems such
as the Traveling Salesman Problem and Job Shop Scheduling
(Dorigo, Maniezzo & Colorni, 1996; Gambardella & Dorigo,
1995). These investigations were concerned with finding one good
solution to a static problem. However, the problem of load balanc-
ing in telecommunication networks is essentially dynamic. The
stochastic nature of calls, and the variations in call distributions,
mean that the problem to be solved constantly changes with time,
as different call combinations give rise to congestion in different
areas of the network. It is essential to maintain network perform-
ance throughout the response of the load balancing system to a
change in call distributions;  we are therefore interested in the per-
formance of the algorithm over a certain period of time, and not
merely in the eventual performance of some fixed solution. The
differences between our method and Dorigo’s are largely deter-
mined by the need to cope with these dynamic aspects of the tele-
communications routing problem.

2 Ant-like Mobile Agents
Consider a network with a certain amount of spare capacity at
each node. Let A and B be two nodes in the network: we wish to
exploit some analogy of trail laying to discover a route from A to
B across the network which uses relatively little capacity (i.e.
traverses few nodes) and which also avoids using capacity on
heavily congested nodes. It will first be convenient to discuss the
problem of simply finding short routes.

2.1  Finding shortest paths
Consider an ant-like mobile agent (an ant) released at A, which
moves randomly from node to node until it arrives at B. If it moves
at one node per time step, then the time it takes to reach B will
reflect the length of its path. If a number of such ants are released
at A, and follow different routes, then the length of each run will
be reflected in the 'age' of each ant when it reaches B. A scheme
for biasing the entries in call routing tables in favour of the routes
followed by the youngest ants reaching B would therefore achieve
the first objective. By analogy with trail laying, we would like
each ant to leave some small influence on the routing table at each
node it passes through along the way, and for these influences to
combine to yield the desired effect. However, there is a problem:
when an ant is on its way to B, it does not know how long it will
take to reach B, and so does not know how good its route is, or
even what its route will be, and so it cannot make any alteration to
the routing tables to reflect the goodness of its route.

One way round this would be to allow the ant to reach B with-
out leaving any influence, and then to allow it to retrace its steps,
leaving an appropriate influence. However, this requires that the
ant must both remember its path, and be able to invert it, or alter-
natively that it leaves temporary traces unique to itself which it
can use to retrace its steps. A far more elegant and computation-
ally undemanding scheme follows from the observation that at
every intermediate node on the way from A to B, the ant's age
reflects the length of the route from that node to A. It can therefore
leave some influence at each node which reflects the time it would
take to get to A from that node, via the inverse of the route taken
by the ant. It is not practical to index the record of this influence at
each node by some representation of the route, because this would
require the ant to remember its route, and would require an enor-
mous number of entries at each node, and a suitable encoding
scheme. However, since the node can easily detect which link the
ant arrived over, it requires no memory and little computation for
the ant to make a contribution related to its age which is associated
with 'all routes to A via that link'. At each node, the largest influ-
ence on the selection of the next node on the way to A would be
deposited by the ant which had arrived there from A by the short-
est route; this would apply at all nodes between node A and node
B, and so by successively following these 'best' indicators at each
node from B to A, the shortest route should be followed.

2.2  Getting down to detail
There are a number of problems with this naive scheme. The first
is that we require new deposits to be combined with old deposits
in some way which reflects a combination of monotonic increase
and decay, rather than by implementing some max function.
(Using a max function is very similar to the underlying idea of
Dijkstra's algorithm.) However, any form of summation will suffer
from the problem that there are a huge number of alternative
routes from A to B, and that very few of them are short; this would
lead to the influence from the short routes being overwhelmed by
the effectively random influence from the longer routes. There are
two obvious ways of counteracting this: weighting short paths
very heavily compared to longer paths; and arranging for the ants
to be somehow biased towards choosing shorter routes anyway,
thereby increasing the relative proportion of ants arriving at B via
the shorter routes. The first is trivial, requiring only the choice of a
suitable function which is decreasing and positively accelerated
with respect to age. The second is also potentially simple, because
at each node the ant encounters on its way from A to B, there is
information about the best routes from that node to B, left by ants
launched from B.

From the point of view of economy, it is desirable that there
should be only a single set of records at each node, which can be
amended by ants, and which can be used both for guiding ants,
and for routing calls. What form should such records take? For
guiding ants, we can take an idea from real ants: when an ant is
faced with two different pheromone trails, it chooses between
them on a stochastic basis which is weighted by the strengths of
the trails. The simplest form of this would be to represent the node
information directly in terms of the probability of selection of
each possible choice. For example, an ant at node G, with destina-
tion B, would find a table in the node indexed under 'B', with one
entry for each of the neighbour nodes (say P, Q, R, and S). The
four entries would sum to unity; the ant would select P, Q, R, or S
by random selection, treating each entry as a probability. For rout-
ing calls, the highest of the cell entries could be selected determin-
istically.

A convenient form for representing the influence of an ant on
the cell entry at a node is as the reciprocal of the age, plus a con-



stant. The following expression proved satisfactory:

where ∆p is the initial change to the cell. The cell entry thus
should become , wherepold is the original entry.

However, the table must be normalised. Therefore the new cell
entry becomes . The other entries

become .

One possible problem with this simple approach is that a phe-
romone table may become frozen, with one entry almost unity,
and the others vanishingly small; the simulated ants would then
always make the same choice. Real ants do not appear to respond
in this way, however strong the stimulation; there is always a
chance that an individual ant will wander off the trail, apparently
at random. This has potentially beneficial effects, in that it ensures
that the whole environment is constantly being explored, although
at a low level; however, it introduces an element of inefficiency, in
that if nothing of use is discovered, the exploration energy has
been wasted. A convenient way of preventing this freezing in the
simulated system is to define a noise factor of f, such that at every
time step an ant has probability f of choosing a purely random
path, and probability (1-f) of choosing its path according to the
pheromone tables on the nodes. The possibly beneficial effects of
the addition of noise to ant-based algorithms were noted in
(Deneubourg et. al., 1990): “Rather than simply tolerating a cer-
tain degree of error, it can even be desirable to deliberately add
error where none or little exists.” Similar mechanisms were found
useful by Sutton (1990) in the field of reinforcement learning.

2.3  Testing the ability to find short paths
Having developed this train of thought, we ran a simulation to
check that this scheme would tend to produce the shortest paths on
a typical network. We used the same model of the network as
Appleby and Steward did (Figure 1).

FIGURE 1. This network topology is the same as the
interconnection structure of the Synchronous Digital Hierarchy
network of British Telecom, and provides a realistic network
topology

At each time step of the simulation, one ant was launched
from each node; the destination of each ant was randomly
selected. The pheromone tables were initialised with equal proba-
bilities for each choice. No calls were placed on the network.
After each time step we froze the pheromone tables, and ran a
nested simulation in which a 'phantom ant' used the pheromone
tables to travel once between all possible combinations of source
and destination node, without affecting the pheromone tables. The
total path length run by the phantom ant was divided by the square
of the number of nodes to yield the average path length followed
by an ant. The simulation was then restarted. Two simulations
were run, one using ants with no noise (f=0) and one using ants
with 5% noise (f=0.05).  Figure 2 shows how for the ants with no
noise the average path length declined over 1000 time steps from
over 40 links to under 4; the minimum for this network is known
to be 3.07 links (or 4.07 nodes). Since the phantom ant selected its
route stochastically, this figure is bound to include some non-opti-
mal choices, and so will be greater than the figure which would
have been obtained from a deterministic choice mechanism. How-
ever, it demonstrates that the mechanism works. With 5% noise,
the routes are very slightly longer, as would be expected. Of
course, a smaller set of mobile agents using Dijkstra's algorithm
would produce a guaranteed optimum result much more effi-
ciently, but the point is that a good enough result can be produced
by minimal agents using an analogue of trail laying.

FIGURE 2. The average route length travelled by ants plotted
against elapsed time for the network of Figure 1.

3 Dealing with Congestion
The next step is to modify the scheme to take congestion into
account. Since the age of an ant is already used to modify the phe-
romone table entries, it seems sensible to allow the congestion
encountered to affect the ant's record of its age.

3.1  Using congestion to affect age
There are two simple and related methods. The first is to add a
quantity to the ant's age record at each node it encounters, with the
quantity being some function of the degree of congestion of the
node. This means that, at the end of its journey, the ant's age will
have been increased by an amount reflecting to some extent the
congestion found at every node, not just that found at the worst
node as in Appleby and Steward. The second method is actually to
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delay the ant by some amount. This has the obvious effect of
increasing its age on arrival at subsequent nodes, just as in the first
method. However, there is an additional and rather subtle effect:
by preventing an ant from leaving a congested node, it prevents
the ant from increasing the pheromone table entries pointing back
to the node, which would have tended to increase traffic through
the node. This breathing space will allow other ants arriving at the
temporarily inaccessible node to reduce those pheromone table
entries by the operation of the normalisation mechanism. The net
effect will be a double reduction in the pheromone table entries
pointing back to the congested node. This delay mechanism is also
attractive from the commonsense point of view - it seems reasona-
ble that it should take more time for the agent to pass through a
congested node.

We require that the change produced by a given node should
increase with increasing congestion. A suitable function is a nega-
tive exponential, with the exponent proportional to the degree of
congestion. After some trial and error, the expression

wheres is the spare capacity of the node, was found to be suitable.

4 Modelling the Network
In order to assess the potential of the system for load management,
and to compare it to other methods, it was necessary to develop a
model network on which suitable distributions of calls could be
placed. The SDH network was again used. Each node was given a
capacity of 40 calls; links between nodes were assumed to have
unlimited capacity.

4.1  Call distributions
An important idea in the area of networks which are not fully
interconnected is that of the call distribution. In a real network,
calls do not occur equally often between all possible pairs of
nodes; at different times, and because of different external factors,
certain pairs of nodes will generate much more traffic that other
pairs, though of course the calls on those nodes may still begin at
random times and last for randomly determined durations. If the
busy nodes are far apart, they will consume more network capacity
than if they are close. If they are in certain places in the network,
they may unavoidably create certain bottlenecks leading to high
congestion. A routing scheme suitable for one call distribution
may be unsuitable for another. For these reasons, we decided to
test the call routing systems not on a single call distribution (such
as source and destination randomly selected with equal probabil-
ity) but on a number of different call distributions.

Ten different call distributions were generated. Each was pro-
duced as follows: nodes were randomly assigned numbers
between 0.01 and 0.07; the numbers across all 30 nodes were nor-
malised to sum to 1; these numbers were taken to be the probabili-
ties that a node would be the end point of a call generated at any
instant under that distribution. From each call distribution, a call
sequence lasting 15,000 time steps was generated as follows: at
each time step, an average of one call is generated (Poisson distri-
bution) with an average duration of 170 time steps (exponential
distribution); the source and destination of each call are obtained
by selecting nodes randomly with the probabilities determined as
above. For the purposes of controlling the experimental design,
each call sequence was numbered from 1 to 10, and split into two
blocks 7,500 time steps long labelled A and B.

5 Modifying Appleby and Steward's Agents
We decided to evaluate the dynamic load balancing abilities of
ants with no noise and with 5% noise. For comparison, we devised
a static routing system consisting of the shortest routes, as deter-
mined by a backtracking algorithm. We also decided to evaluate
the abilities of the mobile agents developed by Appleby and Stew-
ard. However, early tests of the mobile agents revealed some defi-
ciencies, and some possibilities for improvements; the
implementation was therefore modified as detailed below.

5.1  Eliminating circular routes
In (Appleby & Steward, 1994) load agents did not update the rout-
ing tables in the direction of their source node, but in the direction
of an intermediate node, and from all nodes on the route between
this node and the source node. In this way two load agents from
different source nodes may at the same time do updates of routes
to the same node. As these agents might have different data,
because of constant network changes, we suspected that circular
routes might occur in the network, and in early simulations repeat-
ing the work of Appleby and Steward we observed such circular
routes. By making agents update routes in the direction of their
source node, and by strictly limiting the number of load agents per
source to one, we can avoid any possibility of circular routes.
However, we lose the possibly beneficial effect that load agents
also update routes to nodes in the network other than their own
source node.

5.2  Eliminating unnecessarily long routes
We also investigated the use of a different criterion for `best route'
because we had observed unnecessarily long routes in simulations
where load agents maximise the minimum spare capacity. A call
on such a long route occupies many nodes, and this additional
demand on network resources may lead to congestion, causing
subsequent calls to fail; other load agents may then respond to the
congestion by amending the route to follow an even longer path.
This can be counteracted by storing the total sum of squared utili-
sations of all nodes on the route from that node to the agent's
source node, instead of the largest spare capacity of the route.
(The node utilisation is the percentage of the node's capacity that
is occupied by calls.) This introduces a bias towards shorter routes
(routes with fewer nodes). Note that by squaring the utilisation,
the relative influence of heavily utilised nodes is increased.

6 Experimental Design
Because we wished to make statistical performance comparisons
using quantitative data, it was necessary to design the series of
experiments quite carefully. The performance indicator chosen
was the proportion of calls in a given period which could not be
placed on the network; the proportion was used instead of the
absolute number because the stochastic method of call generation
produced different numbers of calls in each block. Early trials
showed that there was enormous variability in the scores between
blocks from different call distributions. The normal way of dealing
with high variability is to take many samples; the variance of the
sample mean is reduced by a factor of the square root of the
number of samples. However, the simulation of telecommunica-
tions networks is computationally very expensive, and so this
strategy cannot be used. The alternative is to take repeated meas-
ures of the same entities under the different experimental treat-
ments. This was achieved by using the ten B sequences as the test
sequences under all conditions, and comparing treatments by com-
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paring the paired observations derived from each sequence under
the two conditions of interest.

Data were taken under four different experimental conditions:
1. allowing each system to adapt to sequence A from given call

distribution and testing it on sequence B from the same distri-
bution

2. allowing each system to adapt on sequence A from a given call
distribution, and testing it on sequence B from a different call
distribution

3. as for (1), but disabling the dynamic load balancing for the test
sequence

4. as for (2) but disabling the dynamic load balancing for the test
sequence
For the ant simulations, initialisation was necessary to produce

pheromone tables which did not contain any loops. This was done
by allowing the network to run without calls for a period of 250
time steps for 0% noise and 500 time steps for 5% noise. Mobile
agents were initialised by setting the routing tables to the same
shortest path settings that were used for the no load balancing
case.

7 Results
The experimental results, showing the percentage of call failures
for each condition, are displayed in tables 1 to 4. Graphs 3 to 5
show the absolute numbers of call failures, measured in successive
blocks of 500 time steps.

A number of planned comparisons were made among the call
failure data using Student's t-test for related samples. The follow-
ing findings reached the 1% significance level:
• All ant experiments gave better results than the corresponding

experiments with the improved mobile agents
• All improved mobile experiments gave better results than the

corresponding experiments with the original mobile agents
• All dynamic load balancing methods gave better results than

no dynamic load balancing
• In the case of unchanged call probabilities, ants with no noise

outperformed ants with 5% noise
• Ants with no noise perform better with unchanged call proba-

bililties than with changed call probabilities
• Stopping launching load agents produces worse performance

than continuing to launch them
• Stopping launching ants produces worse perforance.than con-

tinuing to launch them.

Mean Standard
dev.

Fixed, shortest routes) 12.57% 2.16%

Original mobile agents 9.19% 0.78%

Improved mobile agents 4.22% 0.77%

Ants (0% noise) 1.79% 0.54%

Ants (5% noise) 1.99% 0.54%

TABLE 1. Results for unchanged call distributions

Mean Standard
dev.

No improved mobile agents
after 7500

6.43% 2.17%

No ants (0% noise) after
7500

2.11% 0.60%

No ants (5% noise) after
7500

2.48% 0.69%

TABLE 2. Results for unchanged call distributions, load
balancing stopped

Mean Standard
dev.

Fixed, shortest routes 12.53% 2.04%

Original mobile agents 9.24% 0.80%

Improved mobile agents 4.41% 0.85%

Ants (0% noise) 2.72% 1.24%

Ants (5% noise) 2.56% 1.05%

TABLE 3. Results for changed call distributions

Mean Standard
dev.

No improved mobile agents
after 7500

8.03% 2.88%

No ants (0% noise) after
7500

4.29% 2.06%

No ants (5% noise) after
7500

4.37% 2.27%

TABLE 4. Results for changed call distributions, load
balancing stopped



FIGURE 3. Temporal course of call failure rates for four load
balancing techniques, with unchanging call probabilities.

FIGURE 4. Temporal course of call failure rates for ants, with
changed call probabilities.

FIGURE 5. Temporal course of call failure rates for mobile agents,
with changed call probabilities.

8 Discussion
The results clearly show that minimal mobile agents with behav-
iour modelled on the trail laying abilities of ants can perform use-
ful load balancing, and that they can outperform mobile agents
using sophisticated heuristics and algorithms. Both systems are
shown to be able to cope with sudden changes in the distribution
of call probabilities. It is easy to see that the ant based systems
may also be robust with respect to agent failure, but this was not
investigated.

One of the most interesting questions raised during the simula-
tions was whether the ant-based and mobile agent systems were
converging to a good static set of routing tables for each set of call
statistics, or whether they were constantly adapting to changing
situations. A good static set of routing tables would effectively
combine information about the network topology and the call dis-
tribution statistics; routes would be sufficiently short, but would
avoid the nodes likely to become congested with that topology and
those particular call statistics. We think that three different forms
of adaptation are possible:
• Adaptation to the network topology alone

• Adaptation to the call statistics within a given topology

• Adaptation to temporary situations produced by the random-
ness of the call patterns

8.1  Adaptation to network topology
Although adaptation to the distribution of network loads is a
response to both the topology and the call probabilities, it is possi-
ble to get some insight into how well the system with an arbitrary
set of call probabilities adapts to the topology alone. This insight
can be obtained by inspecting the results of the experiments where
dynamic load balancing is stopped at the same time as the call
probabilities are changed. Any useful adaptation of the control
system can then only be in relation to the topology, which is the
only factor left unchanged.
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For both the agents and the ants, the performance under these
conditions is better than the experiments with fixed shortest path
routing tables and no load balancing at all. Further one can clearly
see that the ant based system performs better than the mobile
agents (8.03% call failures for the improved agents versus 4.29%
and 4.37% for the two ant experiments); this indicates that the ant
based system is superior in adapting to the load distribution
caused by the topology alone.

8.2  Adaptation to the call statistics within a given
topology
To see how well a method performs when adapted to a combina-
tion of topology and call statistics, one can consider the results
where the launching of agents or ants is suddenly stopped, but the
call probabilities remain the same. This freezes the routing tables,
and removes any contribution from short-term adaptations to local
temporary situations. Here the ant based system again performs
better than the mobile agents (6.43% call failures for the agents
versus 2.11% and 2.48% for both ant systems). The results are
also better than those discussed above, involving adaptation to the
network topology alone. The size of the difference gives some
indication of the influence of the call probabilities compared with
the topology alone.

The graph of call failures after a change in call probabilities in
Figure 4 is particularly revealing. Immediately after the change,
failures are at a high level, but as the ant based system adapts to
the new call probabilities, the failure rate declines until it is at the
original adapted level. This shows the dynamics of adaptation to
call probabilities very clearly.

8.3  Adaptation to temporary situations
The performance of ants and agents on adapting to temporary situ-
ations is indicated by the differences in performance under
unchanging call probabilities of the conditions where load balanc-
ing is either continued or stopped. The situations where ants are
launched after 7500 time steps perform better than those in which
launching is stopped. Although the ant based system has adapted
to call probabilities and to the topology, routes are still changed
frequently in response to temporary situations. Because this
results in improved performance, we can take this to indicate that
ants are dynamically adapting the routes on the network to tempo-
rary situations as well. The same can be said about the agents,
which seem in fact to be more sensitive to these temporary situa-
tions than the ants, as the difference in performance between the
two agent experiments is relatively larger. Close observation of the
network while running the simulation also confirmed our impres-
sion of useful reaction to temporary situations for both the ants
and the agents.

9 Conclusions and Further Work
This work shows that ant based load balancing is a promising
technique. Further work is now being undertaken to establish
whether such systems cope well with the characteristics of real tel-
ecommunications networks (continuous growth, sudden failures in
links and nodes), whether they can deal with some of the known
technical problems in network regulation such as Braess' paradox,
whether they are in fact robust with respect to agent failure, and
whether they are better than some of the new techniques of
dynamic routing recently adopted for use in real networks.
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