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SUMMARY Recently, researchers in various fields have
shown interest in the behavior of creatures from the viewpoint
of adaptiveness and flexibility. Ants, known as social insects,
exhibit collective behavior in performing tasks that can not be
carried out by an individual ant. In ant colonies, chemical sub-
stances, called pheromones, are used as a way to communicate
important information on global behavior. For example, ants
looking for food lay the way back to their nest with a specific
type of pheromone. Other ants can follow the pheromone trail
and find their way to baits efficiently. In 1991, Colorni et al. pro-
posed the ant algorithm for Traveling Salesman Problems (TSPs)
by using the analogy of such foraging behavior and pheromone
communication. In the ant algorithm, there is a colony con-
sisting of many simple ant agents that continuously visit TSP
cities with opinions to prefer subtours connecting near cities and
they lay strong pheromones. The ants completing their tours lay
pheromones of various intensities with passed subtours accord-
ing to distances. Namely, subtours in TSP tourns that have the
possibility of being better tend to have strong pheromones, so
the ant agents specify good regions in the search space by using
this positive feedback mechanism. In this paper, we propose a
multiple ant colonies algorithm that has been extended from the
ant algorithm. This algorithm has several ant colonies for solving
a TSP, while the original has only a single ant colony. Moreover,
two kinds of pheromone effects, positive and negative pheromone
effects, are introduced as the colony-level interactions. As a re-
sult of colony-level interactions, the colonies can exchange good
schemata for solving a problem and can maintain their own varia-
tion in the search process. The proposed algorithm shows better
performance than the original algorithm with almost the same
agent strategy used in both algorithms except for the introduc-
tion of colony-level interactions.
key words: multi-agent system, ant algorithm, traveling sales-
man problems, combinatorial optimization problems

1. Introduction

Thre are many kinds of creatures that show adaptive
and flexible behavior to achieve various tasks. Ants,
so-called social insects, are one example. Although
ants have simple abilities, they exhibit collective be-
havior to perform tasks that can not be carried out by
one individual, such as foraging, building a nest, car-
ing for offspring, and defending their colony from ene-
mies. As a result of cooperation in many kinds of micro-
scale behavior, macro-scale complex behavior seems to
emerge without any central or hierarchical control. In
ant colonies, chemical substances called pheromones are
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used as a way of communicating important informa-
tion concerning their colonies [1]. For example, ants
looking for food lay the way back to their nest with a
specific type of pheromone. Other ants can follow the
pheromone trail and find their way to baits efficiently.

Studies on the behavior of ants in colonies and on
pheromone communication may be useful for the de-
velopment of artificial intelligence. Researchers in var-
ious fields have studied the behavior of ants. Naka-
mura, Suzuki and Mikami studied on multiagent sys-
tems based on the behavior of ants and their or-
ganization ability based on pheromone-style commu-
nication [14], [16], [20]. For optimizations, we have
constructed multiagent-based optimization algorithms
based on pheromone-style communication for Vehicle
Routing Problems and Nurse Scheduling Problems [11],
[21]. Subramanian proposed distributed routing al-
gorithms based on simple biological ants for routing
in packet-swiched communication networks [19]. Caro
also proposed an approach using mobile agents based
on the AntNet for adaptive communication networks
routing [3]. Kuntz applied ant-like agents to partition-
ing problems in VLSI technology [12].

The ant algorithm, originally proposed by Col-
orni et al. in 1991 for Traveling Salesman Problems
(TSPs) [4], [5], [8], [9], is also one of optimization algo-
rithms inspired from the analogy of the foraging behav-
ior of ants and interactions between ants in a colony.
The optimization of the ant algorithm is based on low-
level interactions among a large number of cooperating
simple agents, like ants, which are not aware of their
cooperative behavior. To solve TSPs, the ant agents
continuously move from one city to another unvisited
city in a TSP with opinions to prefer subtours con-
necting near cities and they lay strong pheromones.
The ant agents visiting all cities lay some intensity of
the pheromones with subtours included in their com-
pleted tours according to the distances of tours. That
is, subtours that have a possibility of being better in
TSP tours tend to have strong pheromones, and the
ant agents specify the good regions in the search space
by using this feedback mechanism. Several variations
of the ant algorithm, such as the ANT-Q algorithm
by Gambardella, the MAX-MIN ant system by Stützle
and the rank-based version of the ant system have been
proposed [2], [10], [18]. Moreover, the ant algorithm has
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been applied not only to TSPs but also to Quadratic
Assignment Problems by Maniezzo, Graph Coloring
Problems by Costa and Job Shop Problems by Col-
orni [6], [7], [13].

We have extended the original ant algorithm to a
multiple ant colonies algorithm in order to improve the
basic performance of the algorithm. This algorithm
consists of some independent colonies that basically
correspond to the original ant algorithm colony, but
colony-level interactions have been introduced. Simi-
lar ideas were introduced in the parallel Genetic Al-
gorithm, in which interactions among subpopulations
are generally practiced by the exchanging operation of
some individuals [15]. In our proposed algorithm, inter-
actions among colonies are more naturally introduced
by exchanging information on the pheromones as the
schemata for solved problems. The pheromones be-
longing to one colony have different meanings for other
colonies, i.e., there are positive pheromone effects and
negative pheromone effects. The positive pheromone ef-
fects force ant agents to choose the way laid on, and the
negative pheromone effects make the ant agents avoid
to choose the way. This mechanism enables ant agents
to provide good schemata to agents in other colonies
and to share search regions with each other. More-
over, this mechanism seems to be appropriate for par-
allel computing in the sense of allocating one processor
to one colony.

In Sect. 2 of this paper, we introduce the multi-
ple ant colonies algorithm for TSPs. In Sect. 3, we
present the results of computer experiments on some
TSPs. Our proposals are discussed in Sect. 4, and con-
clusions are presented in Sect. 5.

2. Multiple Ant Colonies Algorithm

In this section, the extension of the original ant algo-
rithm to a multiple ant colonies algorithm is described.
This new algorithm has several independent colonies
that basically correspond to the original ant colonies ex-
cept that the behavior of ants in one colony is influenced
by the pheromones in other colonies through colony-
level interactions. There are two types of pheromone
effect: a positive effect and a negative one. The positive
pheromone effect enables ant agents to determine good
schemata in their colony and provide such schemata to
other colonies, whereas the negative pheromone effect
prevents the ant agents from using the search regions
indicated by other colonies’ schemata and from shar-
ing the regions with each other. These effects can be
managed with the control parameters in the algorithm.
These colony-level interactions may enable implemen-
tation of the ant algorithm to parallel computing and
may enable improvement of the basic performance of
the ant algorithm. Figure 1 shows an image of the
multiple ant colonies algorithm with four colonies.

Here, the brief definition of a TSP is described [17].

Fig. 1 An image of the multiple ant colonies algorithm for a
TSP with four colonies.

Given a set of n cities, and distances dij between two
cities, the TSP is a problem of finding the minimal
length of a closed tour that passes through each city
just once. An example of a TSP is given by a graph
(N, E), where N(|N | = n) is the set of cities and E is
the set of edges between cities (a fully connected graph
in Euclidean TSP). TSPs become symmetric in the case
of dij = dji and asymmetric in the case of dij �= dji.

Next, we describe the multiple ant colonies algo-
rithm. Let M and m be the number of colonies and
the number of ant agents in each colony, respectively.
The k-th ant agent in the h-th colony is denoted as the
“(h, k) ant.” The number of M ·m ants search for TSPs
at each time t. In the case of M = 1, this algorithm is
the same as the original ant algorithm without colony-
level interactions. Each ant agent is a simple agent with
the following characteristics:

• It continuously moves from one city i to the next
city j in the time interval between t and t + 1; the
next city j is chosen according to probability that
is a function of the distance dij and intensity of
the pheromone present on the connecting edge in
each colony;

• It visits only unvisited city by itself in preceding
times; this property, implemented to force the ant
agents to make legal tours, holds until its tour is
completed; then the ant memory is cleared to begin
its tour again;

• After completing its tour (i.e., after visiting all
cities), it lays pheromones of various intensities
along each edges included in its tour; the inten-
sity of the pheromone laid is decided as a function
of the total distance of its tour.
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• It behaves continuously until stop time tMAX .

To extend a single colony pheromone to multiple-
colony pheromones, let τh

ij(t) be the intensity of the
pheromone on the edge (i, j) in the h-th colony at time
t. The intensity of the pheromone on the edges in each
colony is initialized to a small positive value at time
0. After each ant has completed its tour in n time
intervals, the intensity of the pheromone τh

ij(t) becomes

τh
ij(t + n) = ρ · τh

ij(t) + ∆τh
ij , (1)

where ρ is a coefficient such that (1− ρ) represents the
evaporation rate of the pheromones between time t and
t + n as in the original ant algorithm. The value of ρ
must be set to a value less than 1 to avoid unlimited
accumulation of the pheromone. The modified intensity
of the pheromone ∆τh

ij is defined as

∆τh
ij =

m∑
k=1

∆τhk
ij , (2)

where ∆τhk
ij represents the intensity per unit of length

of the edge (i, j) along which the pheromove is laid by
ant (h, k) between time t and t + 1, and this is given as

∆τhk
ij =




Q/Lhk
if ant (h, k) uses edge
(i, j) on its tour between
time t and t + n

0 otherwise

(3)

Here, Q is a constant and scarcely affects the behavior
of the algorithm, as is the case in the original algorithm.
Lhk is the total tour length of and (h, k); i.e., the ant
completing a tour with a shorter length is able to lay a
larger intensity of the pheromome along edges included
in its tour. The pheromones laid on probably better
subtours would take large value as a result of whole
behavior.

The new transition probability from city i to city
j for ant (h, k) including colony-level interactions is de-
fined as

phk
ij (t) =




πh
ij(t)/

∑
l/∈tabuhk(t)

πh
il(t) if j /∈ tabuhk(t)

0 otherwise

(4)

πh
ij(t) =

{
M∏
l=1

[
τ l
ij(t) + C(h)

]α(h,l)

}
· [ηij ]β(h) (5)

ηij = 1/dij (6)

Here, tabuhk(t) indicates the tabu list of ant (h, k).
This list consists of cities that have already been visited
cities until time t, and the ant is forbidden to choose
such cities repeatedly. This is reset to φ when the ant
visits all cities and completes its tour, so the ant agents

can usually keep legal tours. πh
ij(t) means the degree of

preference for an edge connected to city j. If this value
is large, ant (h, k) tends to choose city j as the next
one to visit. The parameter α(h, l), which is must be
set in advance, determines the type of pheromone effect
and the degree of influence from colony l. If α(h, l) is
set to a positive value, i.e., a positive pheromone ef-
fect, ant (h, k) tends to prefer schemata indicated by
the pheromone in the l-th colony. Conversely, if α(h, l)
is negative, i.e., a negative pheromone effect, ant (h, k)
tends to avoid choosing edges that have been frequently
used in the l-th colony. If the value of α(h, l) is zero,
the pheromone in the l-th colony has no effect on the
behavior of ants in the h-th colony. The absolute value
of α(h, l) indicates the degree of the pheromone effect.
The effect becomes stronger as the value increases and
becomes weaker as the value decreases. In particular,
α(h, h), the effect from itself, must be positive in order
to cause a positive feedback in the colony. C(h) repre-
sents the degree of insensitivity to the pheromones, and
this parameter is introduced so that the ant agents will
avoid overly sensitive effects towards the pheromones
near zero. ηij is used as a greedy heuristic term that
makes the ants prefer nearby cities, and it seems to be
effective for TSPs. The parameter β(h) represents how
important ηij is for the ants in the h-th colony. Fig-
ure 2 shows the structure of the ant agents with the
control parameters, and Fig. 3 shows the procedure for
the proposed algorithm.

The computational complexities from step 1 to
step 5 are O(Mn2 + M2n2), O(Mmn), O(Mmn2),
O(Mn + Mmn2) and O(Mn2 + M2n2), respectively.
Here, we suppose M � m as the setting of the algo-
rithm, and the computational complexity of the pro-
posed algorithm is of O(MTmn2) where T is the num-
ber of cycles in the algorithm. The order of original ant
algorithm is O(Tmn2) given by the case of M = 1 in
the above. Therefore, the order of multiple ant colonies

Fig. 2 Relationship between ant agents, colonies and problem
domain with control parameters.
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1. Initialize
Set t := 0
For h := 1 to M do

For every edge (i, j)
Set τh

ij(t) := initialvalue

2. Set all ants at the starting city
Set s := 0
Empty all tabu lists
For h := 1 to M do

For k := 1 to m do
Place the starting city of the (h, k) ant,

and insert it in tabuhk(t)
3. Repeat until all cities have been visited

For s := 1 to n − 1 do
For h := 1 to M do

For k := 1 to m do
Choose the city j to move to,

with probability phk
ij (t + s) given by equation (4)

Move the (h, k) ant to the city j

Insert the city j in tabuhk(t + s)
4. Compute changes of the pheromones in every colony

For h := 1 to M do
For k := 1 to m do

Move the the (h, k) ant to the starting city
Compute tour length Lhk by the (h, k) ant
Update the shortest tour found

For h := 1 to M do
For every edge (i, j)

∆τh
ij := 0

For k := 1 to m do
Compute ∆τhk

ij according to equation (3)

∆τh
ij := ∆τh

ij +∆τhk
ij

5. Update the pheromones in every colony
For h := 1 to M do

For every edge (i, j)
τh
ij(t + n) := ρ · τh

ij(t) + ∆τh
ij

Set t := t + n
6. Check stop time

If (t < tMAX )
then

Goto step 2
else

Print shortest tour
Stop

Fig. 3 The algorithm of the multiple ant colonies.

algorithm corresponds to the order of the ant algorithm
in M times running. Namely, if it is showed that the
multiple ant colonies algorithm has better performance
than the ant algorithm in M times running, the pro-
posed algorithm is superior to the original ant algo-
rithm.

In this algorithm, more parameters than those in
the original algorithm must be determined in advance,
but trials of various relationships among colonies can
be done by controlling these parameters. The manage-
ment of colony structure is very important in the case
of multiple colonies. In addition, we don’t focus on
exquisite agent strategies or heuristics specialized to the
solved problem but a very simple heuristic in this pa-
per. The objective of this study was how to extend the

original ant algorithm to one for multiple ant colonies
in order to improve the basic performance of the algo-
rithm, and such specializations will be discussed in a
future paper.

3. Computer Experiments

We performed some computer experiments to investi-
gate the basic performance and the characteristics of
the proposed algorithm compared with the original al-
gorithm. The first experiment was carried out on a
TSP with a form like a doughnut, and interesting re-
sults were obtained. In the second experiment, the
pheromone effects based on colony-level interactions
with eil101 benchmark TSP in TSPLIB were investi-
gated. In the third experiment, the performance of
the proposed algorithm was compared with that of the
original one for some TSPs in TSPLIB. The values of
parameters in each experiment were determined by ref-
erence to the original settings.

3.1 Experiment 1

The first experimental problem is a symmetric TSP in
which 40 cities are located in a doughnut-like shape.
The radii of the inside and outside circles are 15 and
20, respectively. This type of TSP is known to have
several local optimal solutions, such as “C” type tours
and “O” type tours. The total distance of a “C” type
tour is a little longer than that of an “O” type tour in
our experimental setting. That is, the “C” type tour
has local optimal solutions and the “O” type tour has
a global optimal.

In preliminary experiments, the original ant algo-
rithm always found “C” type tours with all combina-
tions of α = {1, 2} and β = {1, 2, 5, 10} in many tri-
als. This is because incomplete “O” type tours tend
to have larger total distances than do incomplete “C”
type tours and because the intensities of the pheromone
along the edges of the “C” type tour would be greater.
This indicates that the existence of unsearched regions
would be a characteristic of the original ant algorithm
with a simple heuristic. Thus, care should be taken
in using heuristics in families of ant algorithms with
conscious of problem features.

We applied the proposed algorithm to this TSP
using the parameters listed in Table 1. With these
settings, only negative pheromone effects were used as
colony-level interactions. The first colony was not af-
fected by other colonies, and the ants in the first colony
could search at will. The colony was affected only by
the first colony, and the third colony was affected by
the first and second colonies (which can be called a hi-
erarchical colony structure). C(3) took a larger value
than C(1) and C(2) because the third colony would be
strongly influenced by two colonies.

Interesting results are shown in Fig. 4. Fig-
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ures 4 (a)–(c) represent the transition process of the
pheromones at each time. The left, middle and right fig-
ures are related to the intensities of pheromones in the
first, second and third colonies respectively. The width
of each line represents the intensity of the pheromone
on each edge. In (a), ant agents in the first colony put
effective pheromone on “C” type tours rapidly, then ant
agents in the second colony searched different regions
from those searched in the first due to the negative
pheromone effect. Finally in (c), ant agents in the third
colony succeeded to specify different regions from those
in the first and second colonies. Figure 4 (d) shows the
best solutions obtained in each colony through this ex-
periment. The first colony found a solution with a dis-
tance of 218.1, and a global optimal solution with a
distance of 209.5 was found by the second and third
colonies. Namely, global optimal solutions that could
not be found by the first colony were found by the sec-
ond and third colonies, and three local and global op-
timal solutions could be found at same time. These re-

Table 1 Values of parameters used in experiment 1.

M m ρ Q τh
ij(0) tMAX

3 40 0.65 200 5 240

1 2 3
α(1,−) 2 0 0
α(2,−) −0.5 2 0
α(3,−) −0.2 −0.2 2

β(1) 5
β(2) 5
β(3) 5

C(1) 1
C(2) 2
C(3) 20

Fig. 4 The transition of the pheromone and the best solutions
obtained in experiment 1.

sults are very interesting, although we admit that this
is an adhock case.

3.2 Experiment 2

Experiment 2 was performed to confirm the general
properties of colony-level interactions with each set-
ting of parameter α for eil101, 101 cities symmetric
benchmark in TSPLIB. For this confirmation, we pre-
pared ten colonies with one-way interactions, in which
the first colony was not affected by other colonies, and
other colonies were affected by only the first colony with
various values of α. The parameter values used in this
experiment are listed in Table 2. In addition, the val-
ues of α(h, l), which are not listed in the table, were
set to zero. The second, third, fourth and fifth colonies
would receive negative pheromone effects from the first,
while the sixth colony was neutral, and the seventh,
eighth, ninth and tenth colonies would receive positive
pheromone effects from the first.

Table 3 shows the results averaged over 40 tri-
als with the average distance of the best solution, the
quality of a known global optimal solution (642.3), the
standard deviation, and the ratio of duplicate subtours
compared with the best solution of the first colony.
The ratio of duplicate subtours between the first and
the sixth colonies, i.e., a pair with no interaction, was
76.6%, which indicates that the original ant algorithm
has a tendency to always generate solutions with about
76.6% of the same subtours in each trial. The ratios be-
tween the first and second colnies and between the first
and third colonies were very low, but the second and
third colonies found worse solutions in strongly avoid-
ing subtours well used by the first colony. The fifth
colony which received a slightly negative pheromone
effect, generated solutions of almost the same quality
as those of the first colony. The ratio between the first
and fifth colonies was lower than between the first and
sixth colonies, and different regions were searched by
the fifth colony. The seventh, eighth, ninth and tenth
colonies had solutions of about the same quality with
higher ratios; that is, these colonies searched similar
regions due to the positive pheromone effects from the
first colony.

We showed that it is possible to control the
searching behavior of each colony with colony-level
interactions based on parameter α. Strong negative

Table 2 Values of parameters used in experiment 2.

M m ρ Q τh
ij(0) tMAX β(h) C(h)

10 101 0.65 200 5 303000 1.5 1

α(2, 1) α(3, 1) α(4, 1) α(5, 1) α(6, 1)
−1.0 −0.5 −0.2 −0.1 0

α(7, 1) α(8, 1) α(9, 1) α(10, 1) α(h, h)
0.1 0.2 0.5 1.0 1.5
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Table 3 Results of experiment 2.

Colony No 1 2 3 4 5 6 7 8 9 10
Average 691.9 896.0 881.5 724.3 693.9 685.5 685.9 689.1 693.1 693.7

Quality 107.7% 139.5% 137.2% 112.8% 108.0% 106.7% 106.8% 107.3% 107.9% 108.0%
Std. Dev. 13.1 20.6 17.9 15.5 20.0 15.7 12.5 13.6 12.0 10.1
Ratio Dup. 100% 1.3% 2.5% 40.3% 61.4% 76.6% 86.4% 88.8% 88.9% 88.4%

Table 4 Results of experiment 3 (1) using a network colony structure.

The Multiple Ant Colonies Algorithm with Network Colony Structure Ant Algorithm
Colony No 1 2 3 4 5 6 Best Best
Average 692.2 683.6 695.5 685.7 689.7 680.1 665.4 676.6
Quality 107.8% 106.4% 108.3% 106.7% 107.4% 105.9% 103.6% 105.3%
Std. Dev. 21.5 18.9 15.3 19.4 15.7 11.0 9.1 8.0

Fig. 5 A network colony structure with six colonies. α(h, h) =
1.5. The values of α(h, l) not shown were all set to zero.

pheromone effects are not effective and lead to solutions
of inferior quality, while a slight negative pheromone ef-
fect, such as setting α(h, l) to 0.1, seems to be useful
for various searches while maintaining the quality of the
solution.

3.3 Experiment 3

In experiment 2, the negative pheromone effects were
found to be useful for various searches while main-
taining the quality of the solution, so we constructed
the network colony structure shown in Fig. 5. In this
structure, five colonies placed around colony 6 were
related to neighboring colonies with slightly negative
pheromone effects, and the central sixth colony re-
ceived positive pheromone effects from all the sur-
rounding colonies. We expected that in this structure
the surrounding colonies could each search various re-
gions and that the central colony would recieve good
schemata from the surrounding colonies due to posi-
tive pheromone effects. The values of parameter α are
shown in Fig. 5, and m was set to 101, the number of

cities. The values of other parameters were the same
as those in experiment 2.

The results for eil101 averaged over 20 trials are
shown in Table 4. The results obtained from the orig-
inal ant algorithm are shown in the last column for
comparison with those obtained from the multiple ant
colonies algorithm, and the results of the original ant
algorithm show the best solution obtained from 6 in-
dependent run in each trial. That is, it gave the same
number of solutions as those of the multiple colonies al-
gorithm in each trial. The columns labeled “Best” show
the best solutions obtained from 6 colonies in each trial.
In the multiple ant colonies algorithm, the sixth colony
discovered the best solutions 6 times and showed the
best performance of all colonies, as was expected. The
sixth colony succeeded to gather good schemata. More-
over, the best solutions obtained by the multiple ant
colonies algorithm were of better quality thatn those
obtained by the original ant algorithm. Examples of
the best solutions obtained by each colony are shown in
Fig. 6. It is clear from those examples that the colony-
level interactions and the network colony structure are
very effective.

Next, two experiments 3(2) and 3(3) were per-
formed in order to confirm the effectiveness of neg-
ative pheromone effects in the network colony struc-
ture. In experiment 3(2), the values of parameters were
the same as those in Fig. 5 except having the positive
pheromone effects instead of the negative effects, i.e.,
α(2, 1) = α(3, 2) = α(4, 3) = α(5, 4) = α(1, 5) = 0.1.
The settings of experiment 3(3) were also the same as
those in Fig. 5 except having no effects, i.e., α(2, 1) =
α(3, 2) = α(4, 3) = α(5, 4) = α(1, 5) = 0. The results
of both experiments are shown in Tables 5 and 6. In
both cases, the surrounding colonies (No. 1–5) could
generate solutions with similar quality to the experi-
ment 2, but the center colony (No. 6) could generate
worse qualities. Moreover, the best solutions of both
cases had similar quality to the original ant algorithm.
These results indicate that the network colony struc-
ture without the negative pheromone effects tend to
search wasteful regions without varieties. Namely, the
surrounding colonies behaved similarly, and the cen-
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Fig. 6 Examples of best solutions obtained by each colony in experiment 3 (1).

Table 5 Results of experiment 3 (2) using a network colony structure based on the
positive pheromone effects.

Colony No 1 2 3 4 5 6 Best
Average 703.6 688.6 686.9 685.9 696.1 692.9 677.5
Quality 109.5% 107.2% 106.9% 106.8% 108.3% 107.8% 105.5%
Std. Dev. 21.8 16.6 12.8 14.2 13.1 17.8 11.4

Table 6 Results of experiment 3 (3) using a network colony structure based on no
effects.

Colony No 1 2 3 4 5 6 Best
Average 698.5 684.2 689.0 686.8 695.9 691.8 673.4
Quality 108.7% 106.5% 107.3% 106.9% 108.3% 107.7% 104.8%
Std. Dev. 17.5 10.8 13.6 10.7 11.8 21.1 9.1

Table 7 Results for other TSPs.

Problem Multiple Ant Colonies Algorithm Ant Algorithm
Name Dimension Best Avg. Quality Std. Dev. Time Avg. Best Avg. Quality Std. Dev Time Avg.
att48 48 34972.1 104.3% 222.2 139.6 sec 35169.2 104.9% 232.5 56.1 sec
eil51 51 448.3 104.3% 4.8 196.6 sec 457.7 106.5% 2.6 146.7 sec
st70 70 710.9 104.8% 8.3 319.2 sec 727.9 107.3% 15.9 341.1 sec
gr96 96 543.9 106.2% 2.9 956.5 sec 550.3 107.4% 14.1 848.8 sec
ch130 130 6348.6 103.9% 43.8 1398.4 sec 6423.1 105.1% 81.6 1757.2 sec

ter colony couldn’t gather effective schemata concerned
with the search space. Therefore, we can say that the
network colony structure with the negative pheromone
effects are very effective against the original ant algo-
rithm.

Table 7 shows the results averaged over 20 trials
for other TSPs in TSPLIB with the same colony struc-
ture used in experiment 3. In all cases, the multiple ant
colonies algorithm showed better performance than did
the original ant algorithm. In addition, “Time Avg.”
columns in Table 7 show the time to find best solu-
tions by Pentium III 500 MHz IBM-PC computer based
on Linux Operating System. This result indicates the
use of the multiple ant colonies algorithm is effective
with better qualities against the original one because
the time of both algorithms are almost the same. The
time to find the best solutions increases linearly as the
size of the problems increases. and it shows the possi-
bility to apply the proposed algorithm to large TSPs.

However, the qualities of solution obtained by both
algorithms do not seem to be better than the quality
of solutions obtained by approximate methods, such
as Genetic Algorithm, Simulated Annealing, and Tabu
Search, due to a lack of careful adfustment to the pa-

rameters for solving these TSPs. In particular, the ant
agents in both algorithms generated tours that included
many cross-subtours in each trial. For example, this
weakness in TSPs could be broken to regard solutions
that are generated by the ant agents as genotype so-
lutions and then these genotypes could be translated
into phenotype solutions in such a way as to apply
operations such as 2-opt to each cross-subtour point;
however, this idea was not used in this study for only
comparisons between the proposed algorithm and the
original one.

4. Discussion

Generally, approximate methods with hand-crafted
heuristics tend to have weak points that search regions
would be specified by properties of used heuristics but
these heuristics often make search efficient. The origi-
nal ant algorithm also has this weakness, and we should
therefore handle heuristics with conscious of problem
features. We consider that the proposed multiple ant
colonies algorithm can overcome this weakness by the
introduction of colony-level interactions without requir-
ing exquisite heuristics. The negative pheromone ef-
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fects enable the maintenance in the search process, and
colonies can easily exchange good schemata with each
other due to the positive pheromone effects. In our
proposals, we didn’t dare to include well tuned up ant
agent strategies for the sake to extend a basic perfor-
mance of the ant algorithm, and the performance will
be still better with nice strategies using in the ant al-
gorithm families.

Moreover, the proposed algorithm can be applied
to a parallel computing, such as cluster computing,
without the need to consider synchronization of op-
erations, and it would have better performance than
that of the original ant algorithm simply running par-
allel. However, further investigation of the construction
of colony structures and determination of interactions
between colonies is needed. It is desirable for the al-
gorithm to autonomously, adaptively, and dynamically
organize its interactions in accordance with states, al-
though we decided as hand-crafted in the experiments,
and the interactions worked effectively in a network
colony structure. One idea for the control of interac-
tions is to introduce a super ant agent, i.e., the queen
ant agent, that observes the behavior of the ant agents
and manages the colony-level interactions. The queen
ant agent could be designed to focus on uni-path be-
havior, i.e., the situation in which all ant agents make
the same tour [5]. It will be effective that the queen ant
agent operates the changing mechanisms of the param-
eters according to the whole behaviors in its colony.

5. Conclusions

We have extended the original ant algorithm to a multi-
ple ant colonies algorithm with introducing the colony-
level interactions such as positive and the negative
pheromone effects. The negative pheromone effects
enable maintenance of variation in the search process
while maintaining quality in the solutions, and colonies
are able to exchange good schemata for solving a prob-
lem due to the positive pheromone effects. Through
computer experiments, we showed that the proposed
algorithm has better performance than the original ant
algorithm with almost the same agent strategies. In a
future study, we will attempt to apply the proposed al-
gorithm to cluster computing with well-defined heuris-
tics or strategies and also to huge combinatorial op-
timization problems such as a TSP problem involving
several thousand cities.

References

[1] W.C. Agosta, Chemical Communication – The Language of
Pheromone, W.H. Freeman and Company, New York, 1992.

[2] B. Bullnheimer, R.F. Hartl, and C. Strauss, A New Rank
Based Version of the Ant System: A Computational Study,
Working paper, Institute of Management Science, Univer-
sity of Vienna, Australia, 1997.

[3] G.D. Caro and M. Dorigo, “AntNet: A mobile agents ap-

proach to adaptive routing,” Technical Report 97/12 of
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