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ABSTRACT

In this paper we present two versions of AntNet, a novel
approach to adaptive learning of routing tables in wide
area best-effort datagram networks. AntNet is a distributed
multi-agent system inspired by the stigmergy model of com-
munication observed in ant colonies. We report simula-
tion results for AntNet on realistically sized networks using
as performance measures throughput, packet delays and
resources utilization. Our tests show that both instances
of AntNet show superior performance with respect to the
current Internet routing algorithm (OSPF), some improved
old Internet routing algorithms (SPF and distributed adap-
tive Bellman-Ford), and recently proposed forms of asyn-
chronous online Bellman-Ford (Q-routing and Predictive

Q-routing).

KEYWORDS: Adaptive routing, ant colony opti-
mization, distributed multi-agent systems.

1 INTRODUCTION

In this paper we consider the problem of adaptive routing
in communications networks: we focus on routing for wide

area datagram networks with irregular topology and best-
effort service, the most remarkable example of such net-
works being the Internet.

The goal of every routing algorithm is to direct traf-
fic from sources to destinations optimizing at the same
time several measure of network performance as through-
put (correctly delivered bits per time unit), packet delays
and resources utilization. The general problem of determin-
ing an optimal routing algorithm can be stated as a multi-
objective optimization problem in a non-stationary stochas-
tic environment. Information propagation delays, and the
difficulty to model the whole network dynamics under arbi-
trary traffic patterns, make the general routing problem in-
trinsically distributed. Routing decisions can only be made
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on the basis of local and approximate information about the
current and the future network states.

The adaptive routing algorithms we propose in this pa-
per, calledAntNet are distributed and mobile multi-agent
systems well matching the above characteristics of the gen-
eral routing problem. The design of our algorithms has been
inspired by previous works on ant colonies and, more gen-
erally, by the notion ostigmergy[1, 2], that is, the indirect
communication taking place among individuals through lo-
cal, persistent (or slowly changing) modifications induced
in their environment. Real ants have been shown to be
able to find shortest paths using a stochastic decision pol-
icy based only on local information represented by the
pheromone trail deposited by other ants [3].

Algorithms that take inspiration from ants’ behavior in
finding shortest paths have recently been successfully ap-
plied to several discrete optimization problems [2, 4, 5, 6,
7, 8, 9]. In ant colony optimization each one of a set of con-
current artificial ants makes use of a stochastic local search
strategy to build a solution to the combinatorial problem un-
der consideration. The whole set of ants collectively search
for high quality solutions by a cooperative effort mediated
by indirect communication of information on the problem
structure they collect while building solutions.

Similarly, in AntNet, artificial ants (agents) collec-
tively solve the routing problem by a cooperative effort in
which stigmergy, mediated by the network nodes, plays a
prominent role. By using a stochastic routing policy based
on local (public) and private information ants concurrently
and asynchronously explore the network and collect use-
ful information. While exploring, the ants adaptively build
probabilistic routing tables and local models of the network
status using indirect and non-coordinated communication
of the information they collect.

We report on the behavior of two different versions
of AntNet, compared to the following routing algorithms:
Open Shortest Path First (OSPF) [10], Shortest Path First
(SPF) [11], distributed adaptive Bellman-Ford (BF) [12],
Q-routing [13], and PQ-routing [14]. We consider realistic
experimental conditions tested on the Japanese NTT private
backbone and on a set of 100 and 150-node randomly gen-
erated networks. In all cases AntNet algorithms show the



best performance and the most stable behavior. Among the
competitors SPF and BF are the best performing.

2 THE COMMUNICATION NETWORK
MODEL

We have developed (in C++) a discrete-event realistic sim-
ulator of IP-like datagram networks. The instance of the
communication network is mapped on a directed weighted
graph with N nodes with limited buffer space. All the

links are viewed as bit pipes characterized by a bandwidth

(i) a routing table, organized as in distance-vector algo-
rithms [16]; the table stores for each péitn) a prob-
ability value Py,

Z Py =1, d € [1, N], N}, = {neighbors(k)}
neN

which expresses the goodness of choosirgs next
node when the destination nodelis

We present two versions of AntNet, that in the fol-
lowing we call respectively AntNet-CL and AntNet-CO.
AntNet-CL (the same algorithm as presented in [17], where

(bits/sec) and a transmission delay (sec), and are accessed Was called simply AntNet) is our first implementation

following a statistical multiplexing scheme. All the travel-
ing packets are subdivided in two classes: data and rout-
ing packets. All the packets in the same class have the
same priority, so they are queued and served only on the
basis of a first-in-first-out policy, but routing packets have a
higher priority than data packets. Service times for the two
classes are generated following different probabilistic mod-
els. Packets can be discarded on node arrival because of
lack of incoming buffer space and/or expired time-to-live.
No arrival acknowledgment or error notification packets are
generated back to the source and only a very simple flow
control mechanism is implemented.

Because of the tight coupling between adaptive routing
and flow and congestion control components we chose not
to implement a “real” transport layer. In fact, we wanted
to check the behavior of our algorithm and of its competi-
tors in conditions which minimize the number of interacting
components that should be designed together to well match
each other.

3 THE ANTNET-CL AND ANTNET-CO
ALGORITHMS

AntNet is composed of two sets of homogeneous mobile
agents [15], called in the followingorward and back-
ward ants. In AntNet we retain the core ideas of the ant
colony optimization paradigm, but we have translated them
to match a distributed, dynamic context, different from
combinatorial optimizatioh Ants communicate in an indi-
rect way according to the stigmergy paradigm, through the
information they concurrently read and write in two data
structures stored in each network ndde

(i) an arrayMy(u,o?) of data structures defining a sim-
ple parametric statistical model of the traffic distri-
bution for all destinations!, as seen by the local
nodek,

1AntNet is not the only algorithm based on the ant colony metaphor
that has been applied to routing. Schoonderwoerd et al. [9] have consid-
ered the routing problem in connection-oriented networks. Their approach
is different from ours because their network and their algorithm was mod-
eled after a very specific type of telephone network. Because of this it was
impossible to re-implement and compare their algorithm with ours in the
context of datagram best-effort routing we consider in this paper.

of AntNet and it has been developed to manage routing
in connection-less best-effort networks, while AntNet-CO
(presented for the first time in this paper) is a more reac-
tive version of AntNet-CL, that better matches the require-
ments of routing in high-speed connection-oriented net-
works where best-effort services are provided concurrently
with Quality-of-Service sessiofis

We first informally describe the behavior of AntNet-
CL, while AntNet-CO will be described in the following,
highlighting the way it differs from AntNet-CL.

e Atregular intervals, from every network nodga for-
ward antF_, 4, is launched, with a randomly selected
destination nodé. Destinations are chosen to match
the current traffic patterns.

e Each forward ant selects the next hop node using the
information stored in the routing table. The next node
is selected, following a random scheme, with a prob-
ability proportional to the goodness of each not still
visited neighbor node and to the local queues status. If
all neighbors have been already visited a uniform ran-
dom selection is applied considering all the neighbors.

¢ In case the selected link is not currently available, the
forward ant waits its turn in the low-priority queue of
the data packets, where it is served on the basis of a
FIFO policy.

e The identifier of every visited node and the time
T, elapsed since its launching time to arrive at this
k-th node are pushed onto a memory st&ck, (k)
carried by the forward ant.

¢ If a cycle is detected, that is, if an ant is forced to re-
turn to an already visited node, the cycle’s nodes are
popped from the ant’s stack and all the memory about
them is destroyed.

e When the anf;_, ; reaches the destination nodgit
generates a backward aBt;_, ¢, transfers to it all of
its memory, and then it dies.

e The backward ant makes the same path as that of its
corresponding forward ant, but in the opposite direc-
tion and making use of high-priority queues. At each
nodek along the path it pops its stack_,4(k) to
know the next hop node.

2AntNet-CO is currently under development and testing to manage
fair-share connection-oriented networks. In this paper we present its sim-
plest implementation, applied to best-effort connection-less networks.



e Arriving in a nodek coming from a neighbor nodg,
the backward ant update®st; and the routing table
for all the entries corresponding to every nadm the
pathk — d followed by antF}_,, starting from the
current node.

— The sample means and variances of the model
M. (n, o) are updated with the trip timeg, _, ;
stored in the stack memossj;_, 4(k).

— The routing table is changed by incrementing the
probabilitiesP;; associated with nodg and the
nodesi, and decreasing (by normalization) the
probabilitiesP;,, associated with the other neigh-
bor nodes:. Trip timesT},_,; experienced by the
forward antF,_,; are used to assign the proba-
bility increments.

In AntNet-CO the above basic behavior is identical ex-
cept that (i) forward ants make use of high-priority queues
as backward ants, (ii) they do not carry in the memory stack
any information about their experienced tinEs,;,, and
(i) backward ants update the routing tables in the visited
nodes using estimates of ants’ trip times. These estimates
are computed at each nokleusing a local statistical model
L} capturing the depletion dynamics of each of the local
links I. In this paper we use the simplest type of model
L, that is, given the number of bitg of the data packets
waiting in the queue of, the virtual trip time to reach the
desired neighbor is computedd@s- (¢, +s,)/ B, whereB,
is the bandwidth of the links,, is the size of the ant packet
andd; is the link’s propagation delay. In both AntNet-CO
and AntNet-CL forward ants apply a stochastic policy to
discover a feasible good path: in AntNet-CL forward ants
behave exactly like data packets and the delays they expe-
rience are used by backward ants to score the quality of
the paths they crossed, while, in AntNet-CO forward ants
quickly discover a path that is scored by backward ants us-
ing trip times locally estimated by means of the mode&ls

In both AntNet algorithmsT},_.; is the only explicit
feedback signal we have: it gives an indication about the
goodnessr of the followed route because it is propor-
tional to its length from a physical point of view (number
of hops, transmission capacity of the used links, process-
ing speed of the crossed nodes) and from a traffic conges-
tion point of view. The problem is thdf;_,4 can only
be used as a reinforcement signal. In fact, it cannot be
associated with an exact error measure, given that we do
not know the optimal trip times, which depend on the net
load status. The values stored in the madi¢} are used
to score the trip times by assigning a goodness measure
r = r(Tk—a, M), € (0,1] (ris such that the smaller
T4, the higherr). This dimensionless value takes into
account an average of the observed values and of their dis-
persion: (1 — W4 /Tk—a) + Ao, W), whereWy._, 4 is
the best trip time experienced over an adaptive time win-
dow, andA(o, W) is a correcting term (the rationale be-
hind this choice forr is discussed in [17])r is used by
the current nodé as a positive reinforcement for the node

f the backward anB,;_,; comes from. The probability
Py is increased by the computed reinforcement value
Py < Py + (1 - Pdf)r = Pdf(l - ’f’) +r. In this way, the
probability P4 will be increased by a value proportional to
the reinforcement received and to the previous value of the
node probability (that is, given a same reinforcement, small
probability values are increased proportionally more than
big probability values). ProbabilitieB,, for destinationd

of the other neighboring nodesimplicitly receive a neg-
ative reinforcement by normalization. That is, their values
are reduced so that the sum of probabilities will still be 1:
Pdn — Pdn(l — 7“).

Itis important to remark that every discovered path re-
ceives a positive reinforcement in its selection probability.
In this way, not only the (explicit) assigned valuelays
a role, but also the (implicit) ant’s arrival rate. An impor-
tant aspect of the AntNet algorithmis that the routing tables
are used in a probabilistic way not only by the ants, but also
by the packets. This mechanism allows an efficient distribu-
tion of the data packets over all the good paths and has been
observed to significantly improve AntNet performance. A
node-dependent threshold value avoids the choice of low
probability links.

As a last consideration, note the critical role played by
ant communication. In fact, each ant is complex enough to
solve a single sub-problem but the global routing optimiza-
tion problem cannot be solved efficiently by a single ant.
It is the interaction between ants that determines the emer-
gence of a global effective behavior from the network per-
formance point of view. The key concept in the cooperative
aspect lies in the indirect and non-coordinated way com-
munication among ants happens (stigmergy [1]). We used
stigmergy as a way of recursively transmitting, through the
nodes’ data structures, the information associated with ev-
ery “experiment” made by each ant.

4 ROUTING ALGORITHMS USED FOR
COMPARISON

The following algorithms, belonging to the various possi-
ble combinations of static and adaptive, distance vector and
link state classes [16], have been implemented and used to
run comparisons. OSPF (static, link state) is our implemen-
tation of the official Internet routing algorithm [10] (since
we did not consider failure conditions the algorithm reduces
to static shortest path routing). SPF (adaptive, link state) is
the prototype of link-state algorithms with dynamic metric
for link costs evaluations. A similar algorithm was imple-
mented in the second version of ARPANET [11]. We im-
plemented it with state-of-the-art flooding algorithms and
link cost metrics [18]. Link costs are evaluated over moving
windows using a link usage metric based on the fraction of
time the link has been used during the last observation win-
dow. This metric was the most effective among the several
we considered. BF (adaptive, distance-vector) is an adap-
tive implementation of the distributed Bellman-Ford algo-



rithm with dynamic metrics [12]. Link costs are evaluated
as in SPF above. Q-R (adaptive, distance-vector) is the Q-
routing algorithm as proposed in [13]. This is an online
asynchronous version of the Bellman-Ford algorithm. PQ-
R (adaptive, distance-vector) is the Predictive Q-routing al-
gorithm [14], an extension of Q-routing.

5 EXPERIMENTAL SETTINGS

Networks - In our experiments we used NTTnet, the
Japanese NTT fiber-optic corporate backbone, and a set of
randomly generated networks of 100 and 150 nodes. NT-
Tnet has 57 nodes and 162 bi-directional links, link band-
width is of 6 Mbit/sec, while propagation delays range be-
tween 1 to 5 msec. NTTnet is not well balanced. The dis-
tance between a pair of nodes in term of hops ranges from 1
to 20, while the ratio between the mean connectivity degree
and the number of nodes is about 0.05. The random net-
works have mean connectivity degree slightly greater than
3 and the number of links per node ranges from 2 to 9. Link
bandwidths are set to 1.5 Mbit/sec and propagation delays
range from 1 to 10 ms. All nets have null link and node fault
probabilities, local buffers of 1 Gbit, and packets maximum
time to live set to 15 sec.

Traffic patterns - Traffic is defined in terms of open
sessions between a pair of active applications situated on
different nodes. We considered a Poisson (P) distribution to
shape the arrival of new sessions on each node, that is, inter-
arrival times are negative exponentially distributed. The
Poisson process can be identical over all the nodes (Uni-
form Poisson, UP), or it can be different for each node
(Random Poisson, RP). For all the session types, packet
sizes, packet inter arrival times and the total number of gen-
erated bits follow a negative exponential distribution.

Performance metrics- We used throughput (deliv-
ered bits/sec), data packets delay (sec) and routing over-
head (routing bandwidth utilization / available bandwidth).
For packets delay we report the whole empirical data dis-
tribution, that takes into account the intrinsic variability of
packet delays.

Algorithms parameters - In AntNet, the generation
interval of the forward ants is set to 0.3 (sec) and the size of
the ant packet is 24 #8,, bytes, wheréV,, is the incremen-
tal number of hops made by the forward ant. In OSPF, SPF,
and BF, the length of the time interval between two consec-
utive routing information broadcasting and the length of the
time window to average link costs are the same, and they are
set to 0.8 or 3 seconds, depending on the experiment. In Q-
R and PQ-R the transmission of routing information is data-
driven. For SPF and OSPF, the size of the routing packet
sent from a generic nodeis 64 + §\,,| bytes, whergV,, |
is the number of neighbors of node For Q-R and PQ-R,
the routing packet size is 12 bytes, while for BF is set to 24
+ 12N bytes, with/NV equal to the number of nodes in the
network. For all the algorithms processing time for routing

packets have been assigned depending on the network size
and on raw estimates of available processing power.

6 RESULTS AND DISCUSSION

Experiments reported in this section compare AntNet-CL
and AntNet-CO with the previously described routing al-
gorithms. All experiments are averaged over 10 trials. Pa-
rameters values for traffic characteristics are given in the
figures’ captions with the following meaning: MSIA is
the mean of the sessions inter arrival time distribution and
MPIA is the mean of the packet inter arrival time distri-
bution. For all the experiments the mean of the packet size
distribution is set to 4096 bit, and the mean of the total num-
ber of bits produced by each session is set to 2 Mb.

In all the reported experiments, the traffic load was
chosen to be “heavy”, that is, we set the values of the traf-
fic patterns parameters to values that caused the network
to reach a state very close to saturation, to better eviden-
tiate the differences among competing algorithms. In fact,
when the traffic load is low, almost all the algorithms per-
form similarly. On the other hand, if the traffic load is too
high, then a reasonable assumption is that it is a temporary
situation. If itis not, structural changes to the network char-
acteristics should be in order.

In figure 1 are reported experimental results on the
NTTnet for a non-uniform Poisson traffic load (RP) distri-
bution. The throughput’s curve in the outer graph of figure
1 shows that all the algorithms but OSPF are able to deliver
approximately the same throughput, while the small, inner
graph, shows how the two AntNet algorithms keep packets’
delays at the same level, which is much lower than that of
all their competitors.
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Figure 2 shows results for a set of 100-node randomly
generated networks with UP load. Reported data are the
average over 10 trials, where for each trial a different ran-
dom network has been used. In this case all the algorithms
were able to deliver the same throughput, while, once again,



differences in the distribution of packet delays are striking.
AntNet-CO is by far the best one, followed by AntNet-CL,
while all the competitors perform around 30%-40% worse.
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As a last experiment, in figure 3 we present results for
a set of 150-node randomly generated networks with a very
heavy RP load. Reported data are the average over 10 tri-
als, where for each trial a different random network has
been used. In this case, there are differences among the
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algorithms’ behavior both for throughput and packet de-
lays. Only AntNet-CL, AntNet-CO and SPF are able to
follow the generated throughput without losses, OSPF be-
haves only slightly worse, while all the other algorithms can
deliver a throughput about 35% lower. Concerning packet
delays, AntNet-CO is still by far the best performing algo-
rithm. AntNet-CL is the second best one, but it keeps delays
much higher than AntNet-CO, about four times higher con-
sidering the 90th percentile. SPF keeps delays much higher
than AntNet-CO, and about 60% higher than AntNet-CL

on the 85th percentile. BF follows, but it had much worse
performance on throughput. OSPF, Q-R and PQ-R perform
rather poorly.

Intable 1 are reported results concerning resources uti-
lization by the routing algorithms as measured by the rout-
ing traffic overhead, that is, the ratio between the gener-
ated routing traffic and the total available bandwidth. Each
row in the table refers to a previously discussed experiment
(figs. 1-3). Although AntNet's overhead is higher than that
of some of its competitors, it must be considered that (i) the
relative weight of the routing packets on the net resources is
still negligible, (ii) this slightly higher resources consump-
tion is compensated by the much higher performance it pro-
vides, and (iii) increasing the routing packet production rate
for the best competitors SPF and BF, does not increase, in
general, their performance, because of their sensitivity to
oscillations.

Table 1:ROUTING OVERHEADRATIO BETWEEN THE BANDWIDTH OC-
CUPIED BY THE ROUTING PACKETS AND THE TOTAL AVAILABLE NET-
WORK BANDWIDTH. ALL DATA ARE SCALED BY A FACTOR OF 10~3,

| [ NTT-RP [ 100-UP] 150 -RP|

AntNet-CL 441 33.33 62.89
AntNet-CO 3.35 54.63 106.5
OSPF 0.14 1.66 2.43
SPF 3.02 14.78 21.46
BF 1.18 11.23 106.7
Q-R 3.36 2.39 5.90
PQ-R 6.37 4.16 8.88

From these results it is clear that AntNet algorithms
perform better than both classic and recently proposed algo-
rithms. Among the competitors SPF shows the best perfor-
mance, followed by BF, while OSPF has the global worse
performance. AntNet-CO showed always the best perfor-
mance and the difference with the performance obtained by
all the other algorithms increases with the size of the test
networks. AntNet-CL behaves always in a satisfying way
but its performance appears to quickly degrade with respect
to AntNet-CO as the size of the networks increases.

In general, differences among algorithms perfor-
mances can be understood on the basis of the different de-
gree of adaptivity and of speed with which the different al-
gorithms respond to traffic conditions changing in the space
and in the time (e.g., the very low performance of OSPF is
mainly due to the lack of use, differently from all the others,
of an adaptive metric).

We identified some aspects of the AntNet algorithms
that make them successful (discussed in detail in [17]): (i)
AntNet is the only algorithm exploring the whole network,
concurrently with the data flow (Q-R and PQ-R do some ex-
ploration, but strictly data driven, while BF and SPF do not
explore at all), (ii) the information AntNet uses and stores
at each node is richer and organized in a less critical way
than that of its competitors, (iii) AntNet uses probabilistic
tables, that allow for a better redistribution of the traffic and
provide a built-in exploration mechanism, (iv) node local
estimates are not directly propagated to other nodes, as on



the contrary done by all the competitors, making AntNet
very robust to locally wrong estimates, (v) AntNet exper-
imentally shows to be very robust to the frequency with
which routing tables are updated, that is, to the ants launch-
ing rate; on the contrary, this is a very critical aspect in SPF
and BF, for which there is no simple way to set the related
parameters, being traffic and topology dependent.

The better performance of AntNet-CO with respect to
its predecessor AntNet-CL can be understood in terms of
its higher reactivity. In fact, AntNet-CO'’s forward ants do
not wait in the data queues. In this way, the information
is collected and propagated faster, and it is more up-to-date
with respect to the current network status, even if it is based
on raw estimates. These characteristics become more and
more important as network sizes grow and paths become
longer and longer. In fact, in these cases, AntNet-CL can
present very long delays in gathering and releasing traffic
information across the network, making completely out-of-
date the information it uses to update the routing tables.

7 CONCLUSIONS

In this paper we proposed AntNet-CL and AntNet-CO, two
versions of AntNet, a novel approach for adaptive routing
in communications networks inspired by previous work on
artificial ants colonies in combinatorial optimization. Us-
ing a realistic simulator of best-effort datagram networks,
we compared AntNet to a set of state-of-the-art algorithms
and we used the NTT Japanese backbone network as well
as two sets of randomly generated networks of 100 and 150
nodes, as benchmark problems. In all the experiments we
ran, both AntNet algorithms had by far the best distribution
of packet delays, and they were among the best algorithms
as far as throughput was concerned. AntNet-CO perfor-
mance was significantly better than AntNet-CL’s, with the
difference between the two algorithms increasing with net-
work size. AntNet algorithms were observed to be very ro-
bust under the different traffic conditions we tested and they
were able to quickly reach a stable behavior. AntNet-CO
and AntNet-CL, as well as all the competitor algorithms,
had a negligible impact on the use of network bandwidth.
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