An adaptive multi-agent routing algorithm
inspired by ants behavior

Gianni Di Caro and Marco Dorigo

IRIDIA — Université Libre de Bruxelles — Belgium
{gdicaro, mdorigo}@ulb.ac.be

Abstract. This paper introduces AntNet, a novel adaptive approach to routing tables
learning in connectionless communications networks. AntNet is inspired Isyighgergy
communication model observed in ant colonies. We compare AntNet with the current In-
ternet routing algorithm (OSPF), some old Internet routing algorithms (SPF and distrib-
uted adaptive Bellman-Ford), and recently proposed forms of asynchronous online Bell-
man-Ford (Q-routing and Predictive Q-routing). In all the experimental conditions con-
sidered AntNet outperforms the competing algorithms, where performance is measured
by standard measures such as network throughput and average packet delay,

1. Introduction

Real ants are able to find shortest paths using as only information the pheromone trail
deposited by other ants [1]. Ant colony optimization (ACO) algorithms which take
inspiration from ants' behavior in finding shortest paths have recently been success-
fully applied to combinatorial optimization [3,6,11,12,13]. In ant colony optimization

a set of artificial ants collectively solve a combinatorial problem by a cooperative ef-
fort. This effort is mediated bgtigmergeticcommunicatiori3, 14], that is, a form of
indirect communication of information on the problem structure ants collect while
building solutions.

In this paper we present AntNet, a novel ACO algorithm applied to the routing
problem in connectionless communications networks. In AntNet artificial ants collec-
tively solve the routing problem by a cooperative effort in which stigmergy plays a
prominent role. Ants build local models of the network status and adaptive routing ta-
bles using indirect and noncoordinated communication of information they collect
while exploring the network.

We compare AntNet on a variety of realistic experimental conditions with the fol-
lowing state-of-the-art routing algorithms: Open Shortest Path First (OSPF) [16],
Shortest Path First (SPF) [15], distributed adaptive Bellman-Ford [18], and to some
recently proposed versions of asynchronous online Bellman-Ford [4, 5]. AntNet was
the best performing algorithm in all considered cases.

2. Problem Characteristics and Communication Network Model

Routing algorithms have the goal of directing traffic from sources to destinations
maximizing some measure of network performance. Gtiemughput(correctly de-
livered bits per time unit) anplacket delaysec) are the performance measures taken
into account. Throughput measures the quantity of service that the network has been



able to offer in a certain amount of time, while packet delay defines the quality of
service produced.

The optimal routing problem can be stated as a multi-objective optimization prob-
lem in a non-stationary stochastic environment. Delays in information propagation, as
well as the difficulty to completely characterize the network dynamics under arbitrary
traffic patterns, make the routing problem intrinsically distributed. Routing decisions
can only be made on the basis of local and approximate information about the current
and the future network states, with additional constraints posed by the network
switching and transmission technology.

In this article we focus on wide area networks, that is, irregular topology datagram
networks with an IP-like (Internet Protocol) network layer and a very simple transport
layer. The instance of the communication network is mapped on a directed weighted
graph withN nodes. All the links are viewed as bit pipes characterized by a band-
width (bits/sec) and a transmission delay (sec), and are accessed following a sta-
tistical multiplexing scheme. For this purpose, every routing node holds a buffer
space where the incoming and the outgoing packets are stored. This buffer is a shared
resource among all the queues attached to every incoming and outgoing link of the
node. All the traveling packets are subdivided in two classes: data and routing pack-
ets. All the packets in the same class have the same priority, so they are queued and
served only on the basis of a first-in-first-out policy, but routing packets have a higher
priority than data packets.

Data packets are fed into the network by applications (i.e., processes sending data
packets from origin nodes to destination nodes) whose arrival rate is dictated by a se-
lected probabilistic model. The number of packets to send, their sizes and the inter-
vals between them are assigned according to some defined stochastic process. A sim-
ple flow control mechanism is implemented which uses a fixed production window
for the session's packets generation. The window determines the maximum number of
data packets waiting to be sent. Once sent a packet is considered to be acknowledged.
In fact, the network simulator we developed (in C++) has not a “real” transport layer.
That is, we haven’'t implemented mechanisms for a proper management of error,
flow, and congestion control. The reason is that we want to check the behavior of our
algorithm and of its competitors in conditions which minimize the number of inter-
acting components.

At each node, packets are forwarded towards their destination nodes by the local
routing component. Decisions about which outgoing link has to be used are made by
using the information stored in the node routing table. When link resources are avail-
able, they are reserved and the transfer is set up. The time it takes to a packet to move
from one node to a neighboring one depends on its size and on the link transmission
characteristics. If on packet's arrival there is not enough buffer space to hold it, the
packet is discarded. Packets are also discarded because of expired time to live. After
transmission, a stochastic process generates service times for the newly arrived data
packet, that is, the delay between its arrival time and the time when it will be ready to
be put in the buffer queue of the selected outgoing link.

3. AntNet: Adaptive Agent-based Routing
As we said, the routing problem is a stochastic distributed multi-objective problem.

The problem is therefore well suited for a multi-agent approach like our AntNet sys-
tem, composed of two sets lmbmogeneous mobile agerjt®], calledforward and



backwardants. Agents each set possess the same structure, but they are differently

situated in the environment; that is, they can sense different inputs and they can pro-

duce different, independent outputs. In AntNet we retain the core ideas of the ant col-
ony optimization paradigm [10, 12, 13], but we have translated them to match a dis-
tributed, dynamic context, different from combinatorial optimization. Ants com-
municate in an undirect way according to the stigmergy paradigm, through the infor-
mation they concurrently read and write in two data structures stored in each network
nodek

(a) an arrayM (u,,0,%) of data structures defining a simple parametric statistical
model for the traffic distribution for destinatiodsas seen by the local nokle

(b) a routing table, organized as in distance-vector algorithms; in the table, a prob-
ability valuePg, which expresses the goodness of chooriag next node when
the destination node & is stored for each paid,) with the constraint

Y P =1 dO[LN], N, ={neighbors(k)}
nUN

The AntNetalgorithm can be informally described as follows.

e At regular intervals, every network noddaunches a forward am,_, with a
randomly selected destination nadleDestinations are chosen to match the cur-
rent traffic patterns.

« Each forward ant selects the next hop node using the information stored in the
routing table. The route is selected, following a random scheme, proportionally
to the goodness (probability) of each neighbor node and to the local queues
status, and trying to avoid previously visited nodes.

e The identifier of every visited node and the time elapsed since its launching
time to arrive at thig-th node are pushed onto a memory stackk) carried by
the forward ant.

« If a cycle is detected, that is, if an ant is forced to return to an already visited
node, the cycle's nodes are popped from the ant's stack and all the memory about
them is destroyed.

*  When the anfF,_, reaches the destination nodeit generates a backward ant
B, .. transfers to it all of its memory, and then dies.

¢ The backward ant makes the same path as that of its corresponding forward ant,
but in the opposite direction. At each nok@along the path it pops its stack
S,_4(K) to know the next hop node.

¢ Arriving in a nodek coming from a neighbor nodgthe backward ant updatik
and the routing table for all the entries corresponding to everyirmdéhe path
k- d, that is the path followed by aRj,_, starting from the current notte
« the sample means and variances of the miiggt, ) are updated with the

trip timesT,_; stored in the stack memo8y (k)

« the routing table is changed by incrementing the probabiRjesssociated
with nodef and the nodels and decreasing (by normalization) the probabili-
tiesP;, associated with the other neighbor node3rip timesT, ; experi-
enced by the forward aRt_, are used to assign the probability increments.

T._q is the only explicit feedback signal we have: it gives an indication about the

goodness of the followed route because it is proportional to its length from a physi-

cal point of view (number of hops, transmission capacity of the used links, processing
speed of the crossed nodes) and from a traffic congestion point of Miésvis an
extremely important aspect of AntNet: forward ants share the same queues as data



packet§, so if they cross a congested area, they will be delayed. This has a double ef-
fect: the trip time will grow and then back-propagated probability increments will be
small, and at the same time these increments will be assigned with a bigger delay.
The problem is thal, 4 can only be used as a reinforcement signal. In fact, it cannot
be associated with an exact error measure, given that we don’t know the optimal trip
times, which depend on the net load status. The values stored in thehaatel

used to score the trip times by assigning a goodness meauig,_,,M,), r ]0,1]

(the smallerT,_,, the higherr). This dimensionless value takes into account an av-
erage of the observed values and of their disperdidd(1-W, /T, o)+ No,W),
whereW, 4 is the best trip time experienced over an adaptive time window, and
A(o,W) is a correcting term (the rationale for this choicerfisrdiscussed in [7]); is

used by the current nodteas a positive reinforcement for the nédlee backward ant

B,_, comes from.

P4 is increased by the reinforcement valBg: — Py + (1-Pg)t = Py -(1-r) +r. In

this way, the probabilityP, will be increased by a value proportional to the rein-
forcement received and to the previous value of the node probability (that is, given a
same reinforcement, small probability values are increased proportionally more than
big probability values).

ProbabilitiesP, for destinatiord of the other neighboring nodesmplicitly re-
ceive a negative reinforcement by normalization. That is, their values are reduced so
that the sum of probabilities will still be B;, — Py, (1-r1).

It is important to remark that every discovered path receives a positive reinforce-
ment in its selection probability. In this way, not only the (explicit) assigned value
plays a role, but also the (implicit) ant's arrival rate.

In Fig. 1 an high-level description of the algorithm is summarized in pseudo-code.

An important aspect of the AntNet algorithm is that the routing tables are used in a
probabilistic way not only by the ants, but also by the packets. This mechanism al-
lows an efficient distribution of the data packets over all the good paths. This has
been observed to improve AntNet performance. The choice of links with very low
probability is avoided by setting for each node a threshold whose value is a function
of the node’s number of links.

As a last consideration, note the critical role played by ant communication. In fact,
each ant is complex enough to solve a single sub-problem but the global routing op-
timization problem cannot be solved efficiently by a single ant. It is the interaction
between the ants that determines the emergence of a global effective behavior from
the network performance point of view. The key concept in the cooperative aspect
lies in the indirect and nooeordinated way communication among arigppens
(stigmergy) [14]. We used stigmergy as a way of recursively transmitting, through the
nodes’ structures, the information associated with every “experiment” made by each
ant (AntNet can be seen as a particular instance of a parallel replicated Monte Carlo
simulation).

4. Experimental Settings

We have selected a limited set of classes of tunable components and for each of them
we have made realistic choices.

1 . . ;
Backward ants do not: they have priority over data to faster propagate the accumulated information.



t:= current_time
t .a-=time_length_of_simulation
At:=time_interval_for_ants_generation
foreach Node # Concurrent activity over the network
# s=source node, d=destination node,
# n=next node, c=current node
while (t <tend)
if ((t mod At)=0)
d:=Select_d_Node()
Launch_Forward_Ant(d)
endif
foreach ActiveForwardAnt(s,c,d)
while (c #d)
next_node:=Select_Link_Using_Routing_Table(c,d)
Put_Ant_On_Link_Queue(c,n)
Wait_On_Data_Link_Queue(c,n)
Cross_The_Link(c,n)
Push_On_The_Stack(n,elapsed_time)
c:=n
endwhile
Launch_Backward_Ant(d,s,stack_data)
Die()
endfor
foreach ActiveBackwardAnt(s,c,d)
while (c #d)
next_node:=Pop_The_Stack(c)
Wait_On_High_Priority_Link_Queue(c,n)
Cross_The_Link(c,n)
Update_Traffic_Model(c,s,stack_data)
Update_Routing_Table(c,s,stack_data,traffic_model)
endwhile
endfor
endwhile
endfor

Fig. 1. AntNet behavior in pseudo-code. Only a top-level description of the algorithm is reported. All the
described actions take place in a completely distributed and concurrent way over the network nodes. The
processes of data generation and routing are not described, but they can be thought of as acting concur-
rently with the ants.

Topology and physical properties of the netin our experiments we used two net-
works: SimpleNet and NTTnet. SimpleNet is a small network specifically designed to
study some aspects of the behavior of the algorithms we compare, while NTTnet (the
private NTT backbone) is the major Japanese backbone. SimpleNet is composed of 8
nodes and 9 bi-directional links. NTTnet is composed of 57 nodes and 162 bi-direc-
tional links. The topology of SimpleNet and NTTnet are shown in Fig. 2. The trans-
mission delays are of 1 msec for SimpleNet and range from 1 to 5 msec for NTTnet.
Links have a bandwidth of 6 Mbit/s in NTTnet, of 10 Mbit/s in SimpleNet. All nets
have null link and node fault probabilities, local buffers of 1 Gbit capacity, and pack-
ets maximum time to live set to 15 sec.

Traffic patterns. Traffic is defined in terms of open sessions between a pair of active

applications situated on different nodes. We considered three basic spatial and tempo-

ral traffic pattern distributions:

¢ Uniform Poisson (UP): for each node is defined an identical Poisson pfaicess
sessiongrrival, that isjnterarrivaltimesarenegativeexponentiatistributed.

¢ Hot Spots (HS): some nodes behave as hot spots, concentrating a high rate of in-
put/output traffic. Sessions are opened from the hot spots to all the other nodes.

« Constant Bit Rate (CBR): at the beginning of the simulation a fixed number of
one-to-all sessions is setup and left constant for the remaining of the simulation.
Their packet production rate is fixed.

All the experiments have been realized considering various compositions of the



above main patterns. For the UP and HS cases, the sessions characteristics are: (i)
packets sizes and inter arrival times follow a negative exponential distribution, (ii) the
total number of bits generated by a session follows the same distribution with mean
value fixed to 2 Mbit.

Fig. 2.a) SimpleNet. b) NTTnet. Each edge in the graph represents a pair of directed links.

Metrics for performance evaluation. We used two standard performance metrics:
throughput(delivered bits/sec), amthta packets delajgec). For data packets delay

we use either the average value over a moving time window, or the empirical distri-
bution that takes into account the intrinsic variability of packet delays.

Routing algorithms used for comparison Comparisons were run using the follow-

ing state-of-the-art algorithms: (i) OSPF is our simplified implementation of the of-
ficial Internet routing algorithm [16]. (i) SPF is the prototype of link-state algorithms
with dynamic metric for link costs evaluations. A similar algorithm was implemented
in the second version of ARPANET [15]. We implemented it with state-of-the-art
flooding algorithms and link cost [17] which are evaluated over moving windows
using a link usage metric based on the fraction of time the link has been used during
the last observation window. (iii) BF asmadaptiveimplementatiorof thedistributed
Bellman-Ford algorithmvith dynamicmetricq2]; link costs are evaluated as in SPF.

(iv) Q-R is the Q-routing algorithm as proposed in [4]. (v) PQ-R is the Predictive Q-
routing algorithm [5], an extension of Q-routing.

Routing algorithms parameters The sizes of the packets generated by each routing
algorithms, in bytes, are: for AntNet 24Ng3; for SPF and OSPF 6488;, for BF
24+12N; for Q-R and PQ-R 12; wheld, is the incremental number of hops done by
the forward antN, is the number of neighbors of nodeandN is the number of net-

work nodes. The packet elaboration times, in msec, are: for AntNet 3; for SPF and
OSPF 6; for BF 2; for Q-R and PQ-R 3. The other main parameters are the following.
For AntNet, the generation interval of ants is set to 0.3 sec (AntNet performance was
experimentally found to be very robust with respect to variations in the value of this
parameter, see [7]). For OSPF, SPF, and BF, the length of the time interval between
consecutive routing information broadcasting and the length of the time window to
average link costs are the same, and they are set to 0.8 or 3 seconds, depending on the
experiment. FoQ-R and PQ-R the transmission of routing information is data-
driven.

5. Results
Experiments reported in this section (averages are over 10 trials) compare AntNet

with the previously described routing algorithms. Parameters values for traffic char-
acteristics are given in the figures’ captions with the following meaning: NHS is the



number of hot spot nodes, MSIA is the mean of the sessions inter arrival time distri-
bution, MPIA-UP, MPIA-HS, and MPIA-CBR are the mean of the packet inter arri-
val time distributions for the UP, HS, and CBR sessions respectively. The mean of
the packet size distributiaaset to 4096 bit in all experiments.

It is important to note that thgalof aroutingalgorithmis to routeall thegenerated
traffic withoutlosseswhile keepingpacketdelaysaslow aspossiblgi.e., it should
keepthenetworkfar fromsaturatiorconditions) Sincepacketlossegequireretransmi-
ssions (these are managed by the tran$g@get,which is not implemented in our
simulator), which in turn cause a traffic increase, results are presented as follows: the
first performance comparison will be done on throughput, and a comparison on
packet delays is done only for those algorithms which have a similar throughput.

Experiments with SimpleNet were designed to study how the different algorithms
manage to distribute the load on the different possible paths. In these experiments all
the traffic, of CBR type, is directed from node 1 to node 6 (see Fig. 2a), and the traf-
fic load has been set to a value higher than the capacity of a single link, so that it can-
not be efficiently routed on a single path. Results regarding throughput (outer graph
in Fig. 3) discriminate between two groups of algorithms: those with a good and ap-
proximately equivalent performance, BF, SPF, and AntNet, and those which very
rapidly saturate (Q-R, PQ-R, and OSPF). The inner graph in Fig. 3 shows that, on
SimpleNet, AntNet is the best algorithm as far as packet delay is concerned. This is a
property that AntNet maintains for all the test problems we have used. The second
best is SPF, while all the others have a much worse behavior. In conclusion, on this
simple net, AntNet is the only algorithm which is able to distribute all the load on the
three paths 1-2-4-5-6, 1-3-5-6 and 1-8-7-6 keeping at the same time the average
delays at a reasonably low level. The main reasons for this behavior, as discussed in
the next section, are to be attributed to the probabilistic routing of both routing and
data packets.

Results obtained on the NTTnet for a uniform Poisson traffic load (UP) distribu-
tion and for hot spots superimposed to a uniform Poisson traffic load (UPHS) are
shown in figures 4 and 5. The uniform Poisson traffic was chosen to be “heavy”, that
is, we set the values of the traffic patterns parameters to values that caused the net-
work to reach a state close to saturation. The reason to do this is that it is only under
heavy load conditions that differences among competing algorithms can be appreci-
ated in a meaningful way. In fact, when the traffic load is low, almost all the algo-
rithms perform similarly. On the other hand, if the traffic load is too high, then a rea-
sonable assumption is that it is a temporary situation. If it is not, structural changes to
the network characteristics, like adding new and faster connection lines, rather than
improvements of the routing algorithm, are in order. In both figures 4 and 5, the big-
ger, outer graph shows the throughput, while the smaller, inner graph shows the em-
pirical distribution of packet delays. From these two figures we can extract the fol-
lowing information: () All the algorithms, with the exception of OSPF, can success-
fully route the totality of the offered throughput, and (ii) AntNet is the algorithm with
the best empirical distribution of packet delays.

In Fig. 6 we investigate the answer of the algorithms to a sudden increase of traffic
load. During the whole simulation the network is given a uniform Poisson traffic load
distribution; at simulation tim&=400 four hot spots are switched on, to be subse-
quently switched off at timé=520. The graphs in Fig. 6 show the instantaneous
throughput (upper graph) and the instantaneous packet delay (lower graph) averaged
over a moving time window of 5 sec.
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Fig. 3. SimpleNet: A comparison of AntNet with five competing algorithms with constant traffic (CBR)
from node 1 to 6. Average over 10 trials. MPIA-CBR=0.0003. Throughput: AntNet, SPF, and BF have

very good and similar performance. Packet delays: AntNet is the only algorithm able to keep all delays
under 0.6 sec.

45.0 T T T T T T T T T
40.0 4
35.0 4
1.0 T T T
g 30.0
2 ’ . 08 [ - 1
a S
‘S 25.0 2 4
S
3 200 g i
s g
2 &
o 15.0 i
<
'_
10.0 PO-R 0 0.05 01 0.15 02 |
Packet Delay (sec)
50 | AntNet |
0.0 L L 1 L 1 I 1 | |

0 100 200 300 400 500 600 700 800 900 1000

Simulation Time (sec)
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all algorithms, but OSPF, have very good and similar performance. Packet delays: AntNet is the only algo-
rithm able to keep more than 90% of the delays under 0.15 sec.
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Observing the upper graph, we can see that all the algorithms increase their
throughput when the hot spots are switched on, and quickly forget the transitory situa-
tion once the hot spots are switched off. The only significant difference in throughput
among algorithms is OSPF lower performance. The lower graph confintiet
better management of packet delays also in this case: after={o@ the load surge
causes the average packet delay to greatly increase for all the algorithms, except for
AntNet, which maintains packet delays at a much lower level.

6. Discussion

The results presented are rather sharp: AntNet performs better, both in terms of
throughput and of average delay, than both classic and recently proposed algorithms.
(Experiments similar to those presented in this paper have been run on other network
topologies with increasing number of nodes and different traffic patterns obtaining
similar results (see [7, 8, 9]).) Among the competitors there is not a clear winner, al-
though OSPF seemed to have a lower performance than the others. Concerning net-
work resources utilization, in Table 2 we report, for each algorithm, the routing over-
head expressed as the ratio between generated routing traffic and total available net-
work bandwidth. Even if AntNet's overhead is higher than that of some of its com-
petitors, it must be considered that (i) the relative weight of the routing packets on the
net resources is negligible, and (ii) this slightly higher network resources con-
sumption is compensated by the much higher performance it provides.

Table 2. Routing overhead for experimental conditions considered in the paper expressed as the ratio be-

tween the generated routing traffic by each algorithm and total available network bandwidth (note: the ra-
tios are scaled by

AntNet  OSPF SPF BF QR PQ-R
SimpleNet (10 ®) 0.20 0.01 0.10 0.06 23 26
NTTnetUP (10 ?) 2.85 0.14 3.68 139 3.72 6.77
NTTnet UPHS (10 ) 381 0.15 4.56 1.39 3.09 481

Differences among algorithms performances can be understood on the basis of the
different degree of adaptivity and of speed with which the different algorithms re-
spond to changing traffic conditions. The very low performance of OSPF can be ex-
plained by both the lack of use of an adaptive metric (which all the other methods
use), and by the fact that we set link costs only on the basis of a shortest path compu-
tation. Differently, on real networks (e.g. on the Internet) these are set by network
administrators who use additional heuristic knowledge about traffic pattermex-To
plainwhy AntNetperformsbetterthan theothersis slightly moretricky. We identified

the following main reasons: (i) the deterministizsus probabilistic use of routing ta-

bles to route data packets, (ii) the use of local versus global information, attee(iii)

differentroutingtableupdatefrequenciesThesearediscussedh the following.

(i) All the tested algorithms but AntNet use deterministic routing tables. In these al-
gorithms, entries in the routing tables contain distance/time estimates to the des-
tinations. These estimates can provide misleading information if the algorithm is
not fast enough to follow the traffic fluctuations, as is the case under heavy load
conditions. Differently, AntNet routing tables have probabilistic entries that, al-
though reflecting the goodness of a particular path choice with respect to the oth-
ers available, do not force the data packets to choose the perceived best path.
This has the positive effect to allow a better balancing of the traffic load on dif-



(ii)

ferent paths, with a resulting better utilization of the resources (as shown in the
experiments with SimpleNet). Probabilistic routing tables provide some remark-
able additional benefits: (i) they give to the ants a built-in exploration method in
discovering new competing paths, (ii) the information they contain, being non-
metric, doesn’t depend in an absolute way on the current topological and physical
characteristics of the network, and (iii) since ants and data routing are decoupled
in AntNet, the exploration of new routes can continue while, at the same time,
data packet can exploit previously learnt, reliable information.

BF, Q-R and PQ-R work with local estimates of distances to destinations. These
estimates are updated by using strictly local information, that is: the traffic situa-
tion on outgoing links, and the distance estimates maintained by neighbor nodes.
Differently, AntNet samples the network and redistributes the global information
ants collect: backward ants redistribute the global information relative to the
paths sampled by the coresponding forward ants to all the nodes they visited.
SPF maintains a global representation of the whole network in each node, which
is updated by periodic flooding of local link costs information. If one of this cost
information is badly estimated (as it is often the case when dynamic metrics are
used), the wrong estimate propagates to all the local representations of the net-
work. Here it is used to calculate shortest paths to build the new routing tables.
The result is that a single erroneous estimate will negatively affect all the routing
tables. From this point of view, AntNet is more robust: an incorrect update will
affect only entries relative to the ant destination in those routing tables belonging
to the ant path.

(i) In BF and SPF the broadcast frequency of routing information plays a critical

7.

In

role, particularly so for BF which has only a local representation of the network
status. This frequency is unfortunately problem dependent, and there is no easy
way to make it adaptive, while, at the same time, avoiding large oscillations. In
Q-R and PQ-R, routing tables updating is datadriven: only those Q-values be-
longing to pairsi(j) of nodes visited by packets are updated. Although this is a
reasonable strategy, given that the exploration of new routes could cause unde-
sired delays to data packets, this causes delays in discovering new good routes,
and is a great handicap in a domain where good routes change all the time. In
AntNet, we experimentally observed the robustness to changes in the ants’ gen-
eration rate. For a wide range of values of the generation rate, the more the ants
generated, the better the algorithm works, until the traffic induced by ants ceases
to be negligible with respect to the data traffic [7].

Conclusions

this paper we introduced a novel algorithm for routing in communications net-

works, called AntNet. AntNet was inspired by previous work on artificial ants colo-

nies in combinatorial optimization [11, 12, 13]. We compared AntNet to a set of
state-of-the-art algorithms using a realistic network simulator, a simple network of 8
nodes, and the NTT corporate network of 57 nodes.

Experimental results showed that AntNet had the best distribution of packet de-

lays, and was among the best algorithms as far as throughput was concerned for all
the experimental conditions we tested. AntNet showed a robust behavior under the
different traffic conditions and the ability to reach a stable behavior very quickly. It

also had, as the other algorithms used for comparison, a negligible impact on the use



of network bandwidth.
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