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Abstract

In this paper we try to describe the main characters of Heuristics \derived" from

Nature, a border area between Operations Research and Arti�cial Intelligence, with

applications to graph optimization problems.

These algorithms take inspiration from physics, biology, social sciences, and use a

certain amount of repeated trials, given by one or more \agents" operating with a

mechanism of competition-cooperation.

Two introductory sections, devoted respectively to a presentation of some general

concepts and to a tentative classi�cation of Heuristics from Nature open the work.

The paper is then composed of six review sections: each of them concerns a heuristic

and its application to an NP-hard combinatorial optimization problem.

We consider the following topics: genetic algorithms with timetable problems, sim-

ulated annealing with dial-a-ride problems, sampling & clustering with communica-

tion spanning tree problems, tabu search with job-shop-scheduling problems, neural

nets with location problems, ant system with travelling salesman and quadratic

assigment problems.

1 Introduction.

In recent years, one of the most important and promising research �eld has been \Heuris-
tics from Nature", an area utilizing some analogies with natural or social systems [Schwe-
fel, M�anner, 1990; M�anner, Manderick, 1992] and using them to derive non-deterministic
heuristic methods and to obtain very good results in NP-hard combinatorial optimization
problems [Glover, Greenberg, 1989; Reeves, 1993]. In this paper we try to describe the
main characters of this sector, a border area between Operations Research and Arti�cial
Intelligence, with some applications to combinatorial optimization problems. In the fol-
lowing we propose a taxonomy which can be useful to better understand the directions of
current research.

We start with a de�nition of the \natural" metaphor that will be considered: systems are
derived from physics, biology and social sciences. Heuristics are obtained

� using a certain amount of repeated trials,

� employing one or more \agents" (neurons, particles, chromosomes, ants, and so on),

� operating (in case of multiple agents) with a mechanism of competition-cooperation,

� embedding procedures of self-modi�cation of the heuristic parameters or of the
problem representation.
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Nature has two big engines: selection that rewards the stronger individuals and penalizes
the weaker ones, and mutation that introduces elements of randomness and permits the
birth of new individuals. In Heuristics from Nature we have a similar situation: selection
is the basic idea for optimization, mutation is the basic idea for non-deterministic search.

The characteristics of Heuristics from Nature can be summarized as follows:

1. they (loosely) model a phenomenon existing in nature,

2. they are non-deterministic,

3. they often present implicitly a parallel structure (multiple agents),

4. they are adaptive1

This leads to the emergence of a \reasonable behaviour" for the system [Bourgine, Varela,
1992], that could be de�ned \intelligent" (here we assume the de�nition of Minsky [1985]
that \intelligence is the ability of solving di�cult problems"): in our case, it means the
production of very good solutions for a combinatorial optimization problem.

A combinatorial optimization problem (COP) is speci�ed by a class of problem instances.
An instance is de�ned by specifying implicitly a pair (S; f), where S is the (�nite) set
of all the feasible solutions, called solution space, and the cost function f is a mapping
f : S ! IR. The optimum value of f is2

fo := minff(i) : i 2 Sg;

and the set of optima is

So := fi 2 S : f(i) = fog:

Our task is to �nd some solution io 2 So.

The way a COP has been de�ned corresponds to what is commonly called a search problem.
A simpler kind of problems, the decision problems, take the following general form: given
a solution space S, a cost function f , a threshold �, does there exist a feasible solution
i 2 S s.t. f(i) � � ?

1With the term \adaptive" we indicate the capacity of the system to use feedback information for mod-
ifying its parameters and its internal model: a well known example are neural nets (with the modi�cation
of link weights).

2Without loss of generality let us consider minimization problems, unless otherwise said.
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It is obvious that being able to solve a search COP enables one to solve the corresponding
decision version, whereas the opposite is not necessarily true.

Let n be the length (i.e. the number of binary digits) of the encoding of a COP instance.
If the maximum amount of computing time needed to solve any instance of length n is
bounded from above by a polynomial in n, for every n, we say that the COP under study is
solvable in polynomial time and that the corresponding solution algorithm is polynomial.
If k is the maximum exponent of such a polynomial we say that the COP is solvable in
O(nk) time.3

P denotes the class of decision problems for which there exists an algorithm determining
in polynomial time for every instance if the answer is \yes" or \no", whereas NP denotes
the class of decision problems for which there exists an algorithm verifying in polynomial
time for every instance if the answer \yes" is correct. Obviously P � NP and it is one of
the most outstanding open problems of today's Mathematics to �nd out if this inclusion
is a proper one or not.

In the late 60's it became more and more clear that most decision combinatorial problems
are in NP , whereas only few of them, although practically very relevant, belong to P:
the reader is referred to the seminal work of Garey and Johnson [1979].

Some of the most important COPs are in fact NP-hard, that is as di�cult to solve exactly
as even the hardest problem in NP . Approaches for solving such problems exactly are
all based on implicit enumeration of the feasible solutions and hence require in the worst-
case an exponential number of steps: on the other hand, when the dimensionality n of
the instance becomes larger and larger, as in most real-world applications, no exponential
algorithm could be of practical utility.4

Nevertheless complexity studies have strongly motivated the development of heuristics
for hard COPs. This survey addresses some of the most successful recently proposed
randomized heuristics for COPs. The use of random steps is motivated as a tool for
exploring the solution space and hence obtaining a better con�dence into the optimality
of the found solution.

The paper begins with a general part, devoted to an introduction and a brief analysis
of Heuristics from Nature, with a tentative classi�cation of them. The paper is then
composed of six sections: each of them is concerned with a class of Heuristics from Nature
and its application to an NP-hard combinatorial optimization problem.

3A function f(n) is O(g(n)) if and only if there exists a constant c > 0 s.t. f(n) � c g(n) for all n.
4This picture is probably too pessimistic: on average in fact even exact implicit enumeration (like e.g.

Branch-and-Bound) algorithms behave much better than in the worst-case.
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2 Heuristics from Nature: a tentative classi�cation.

Let us consider the most celebrated combinatorial optimization problem, the Traveling
Salesman Problem (TSP), and let us suppose to have an \agent" that randomly moves in
the search space (an n-dimension graph): the only condition we impose is that the agent
should be able to memorize in a list the cities already visited, for avoiding repetitions.
In this way after n moves the agent returns to starting city and obtains a solution. This
random search procedure can be repeated, starting from di�erent cities, for obtaining the
classical \multistart" algorithm (MS), our reference method.

You can obtain di�erent heuristics as follows:

1. use a greedy technique for choosing each move of the agent,

2. use a local search technique (exchanging node positions) for improving a solution,

3. use a random local search technique and accept only improving exchanges,

4. use m agents starting from di�erent cities,

5. use a population of agents with non-deterministic recruitment,

6. use a clustering technique for partitioning space and/or agents,

7. use a non-deterministic accepting rule for non-improving exchanges,

8. use information on the (last) moves for implementing a system memory.

The above ideas (introduced in a non-formal way) are basic steps for constructing a set of
more and more sophisticated algorithms that are the object of this work. In particular,
we will treat the following heuristics.

1. GA - Genetic algorithms [Holland, 1975; Goldberg, 1989], the general heuristic
for discrete optimization, applied to timetable problems. A similar technique, not
illustrated here for the sake of brevity, is the Evolution Strategies (ES): the reader
is referred to [Rechenberg, 1973; Schwefel, 1981].

2. SA - Simulated annealing [Van Laarhoven, Aarts, 1987], the well known method
proposed by Metropolis et al. [1953] and revised for optimization by Kirkpatrick,
Gelatt, Vecchi [1983], applied to dial-a-ride problems.

3. SC - Sampling & clustering [Boender, Rinnooy Kan, Timmer, 1982], a method
proposed for discrete optimization problems in [Camerini, Colorni, Ma�oli, 1986],
applied to communication spanning tree problems.
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4. TS - Tabu search [Glover, 1989 and 1990], the general technique proposed by Glover,
applied to job-shop scheduling problems. In this section some ideas of the Greedy
random search method (GR) will also be presented.

5. NN - Neural nets [Hop�eld, Tank, 1985], the well known paradigm proposed �rst in
[McCulloch, Pitts, 1943] and revised by Hop�eld for TSP [1984], presented here in
a more recent form, and applied to location problems. A technique which is a sort
of bridge between SA and NN is the so called Boltzmann Machine (BM) [Aarts,
Korst, 1989].

6. AS - Ant system [Colorni, Dorigo, Maniezzo, 1991], a method proposed in 1991 by
some of the authors of this paper, applied to travelling salesman and to quadratic
assigment problems.

Many classi�cation criteria are possible. Here we suggest the use of the following four
characteristics:

(a) constructive (a1) vs. improving algorithms (a2),

(b) non-structured (b1) vs. structured space (b2),

(c) single solution (c1) vs. population of solutions (c2),

(d) memoryless (d1) vs. memorizing algorithms (d2).

Point (b), structure of the search space, refers to the de�nition of concepts such as distance,
metrics, neighborhood, that we will introduce case by case: in general, classical heuristics
as greedy (constructive), add-and-drop or Lin-Kernigan [1973] (improving), utilize the
Hamming distance or the minimum number of swaps, and de�ne neighbor solutions as
those obtained with \legal moves" in the search space.

Considering only the �rst three characteristics, we obtain table 2.1.

b1-c1 b1-c2 b2-c1 b2-c2

a1 NN MS GR AS
a2 BM GA,ES SA,TS SC

Table 2.1 - A tentative classi�cation of Heuristics from Nature.

Two main features have to be balanced in constructing heuristic algorithms:

� the degree of exploitation, that is the amount of e�ort directed to local search in the
present region of the search space (if a region is promising, search more thoroughly);
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� the degree exploration, that is the amount of e�ort spent to search in distant regions
of the space (sometimes choose a solution in a far region and/or accept a worsening
one, to gain the possibility of discovering new better solutions).

These two possibilities are con
icting: a good trade-o� between them is very important
and must be carefully tuned in each algorithm.

Another trade-o� that must be considered is between e�ort (viz. number of iterations)
and e�cacy (viz. value of the �nal solution): in some sense, the design of a good heuristic
method is a multiattribute problem with two con
icting objectives, e�ort and e�cacy.

One of the main open problems in this area is the study of the asymptotic properties of
the algorithms [Aarts, Korst, 1989]. On this subjet, let us mention some general ideas
which will be considered again later in this work:

� in some algorithms there is a parameter (indicated as control, or learning, or equi-
librium parameter) that varies slowly with the aim of avoiding local optima and
permitting the exploration of the space;

� the more slowly this parameter varies the higher is the probability that the �nal
solution obtained is a global optimum;

� it is possible to design \metaheuristics" containing, as a feature, speci�c local
searches for the optimum value of this control parameter (see, for instance, [Glover,
1989]).

3 Genetic Algorithms

3.1 Features of the method

Genetic Algorithms (GA) were �rst introduced in [Holland, 1975] as a highly robust search
algorithm. Later on, expecially in the work of Goldberg [1989], they were mainly used
as optimization devices: we present here a standard GA applied to a maximization prob-
lem. GA use the population genetics metaphor. In the GA community, an optimization
problem is translated into the problem of �nding the most �t individual (sometimes also
called chromosome) within a population. Fitness is measured by a �tness function,which
is functionally related to the objective function of the problem to be solved. Individuals
are the equivalent of solutions and a population is a set of N individuals. Each individ-
ual consists of a collection (usually a string) of atomic elements called genes. Each gene
can take values on a prede�ned set. The GA operate on the population modifying its
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t := 0; initialize Pop(t) with N chromosomes Popi(t);
while not (terminating condition) do

for i := 1 to N do Fiti := �tness (Popi(t));
for i := 1 to N

NewPopi (t+ 1) := randomly choose Popj(t) 2 Pop(t)

with probability pj =
FitjPN

k=1
Fitk

;

CrossPop(t + 1) := recombine population(NewPop(t + 1));
MutPop(t+ 1) := mutate population(CrossPop(t + 1));
Pop(t+ 1) := MutPop(t + 1);
t := t+ 1

end while

Figure 1: Genetic Algorithms

components. Modi�cations occur according to genetic rules, implemented by the genetic
operators explained in the following. Figure 3.1 shows the pascal-like version of a standard
GA.

The Reproduction operator obtains a new individual NewPopi (t+1) taking into account
the �tness Fitj of each individual Popj(t) in the current population Pop(t). Recombine
population is an operator which takes as input the population NewPop and returns a
new population CrossPop in which individuals are obtained by recombinations of indi-
viduals of NewPop. The recombination is performed by the crossover operator, which
randomly extracts two individuals (parents), chooses with uniformly distributed probabil-
ity a crossing point in the chromosomes representing the two parents, and then exchanges
the values to the right of the crossing point, recombining them to generate two sons. The
crossover operator is applied with probability pc, independent of the speci�c individuals
on which it is applied. Mutate population is an operator which takes as input the pop-
ulation CrossPop and returns a new population MutPop in which some individuals
underwent mutation. Each individual can be selected, with probability pm, and selected
individuals are mutated. For instance, if the individuals are coded as strings on f0; 1g,
mutation changes a 0 into a 1 and vice-versa. Themutation operator introduces basic vari-
ations in the population, guaranteeing the possibility to explore the whole search space,
independently from the speci�c initial population.

3.2 Application to Timetable problems

GA have been successfully applied to a wide variety of theoretical and practical problems.
Here we propose an application to timetable problems [Chahal, De Werra, 1989], a speci�c
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case of which is presented in [Colorni, Dorigo, Maniezzo, 1990]. The speci�c problem we
faced regards the construction of the lesson timetable for an Italian high school. The
choice of this particular problem instance gave us the opportunity of testing the system
and obtaining a reliable validation of the output provided by the implemented model.
The problem is described by:

� a list of m teachers;

� a list of p classes involved;

� a list of n weekly teaching hours for each class;

� the curriculum of each class, that is the list of the frequencies of the teachers working
in the class;

� some external conditions (for example the hours during which some teachers are
involved in other sections or activities).

We want to compute

min f(s;D;W;P )

where s is the number of unfeasibilities, as de�ned in the following; D is the set of didactic
costs (e.g., having the hours of the same subject clustered in a few days of the week); W
is a set of organizational costs (e.g., having no teacher available for possible temporary
teaching posts); P is a set of personal costs (e.g., having the day-o� in an undesired day
of the week).

Every solution (timetable) generated by our algorithm is feasible if it satis�es the following
constraints:

� every teacher and every class must be present in the timetable in a prede�ned
number of hours;

� there may not be more than one teacher in the same class in the same hour;

� no teacher can be in two classes in the same hour;

� there can be no \uncovered hours" (that is, hours when no teacher has been assigned
to a class).

To apply a GA to this problem, it is necessary to identify:
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1. a meaningful representation for the candidate solutions;

2. a �tness function to assess di�erent solutions;

3. a set of useful genetic operators, that can e�ciently recombine and mutate the
candidate solutions.

These points have been tackled as follows. Representation. This aspect has been solved
by separately scheduling groups of p (usually 10) classes, characterized by a list of m
(usually 20-25) shared teachers, over a period of n (usually 30) weekly teaching hours.
This allows us to represent the problem as a matrix R (an m � n matrix of elements
rij) where each row corresponds to a teacher and each column to an hour. The alphabet
chosen is the set A (rij 2 A) of the jobs that teachers have to perform: its elements are
the lessons to be taught and other speci�c activities. Every element rij of the matrix R
is a gene: its allelic value may vary on a subset of A speci�c to the teacher corresponding
to the row containing the gene. Each individual of the GA population is coded by a
matrix R. Fitness function. This aspect has been solved after several interactions with
school teachers: we came out with a generalized cost, hierarchically structured, which
represents the distance existing between the current timetable and the ideal needs of the
school. The cost is de�ned through a set of weights interactively chosen by the user. The
hierarchical structure has been chosen in order to acknowledge the di�erent relevance of
the several groups of problem conditions: thedi�erences are re
ected in the weights, which
have di�erent orders of magnitudes. Speci�cally, we identi�ed three levels of weights: at
level 1 (feasibility conditions) we penalize possible superpositions of teachers (two or
more teachers during the same hour in the same class) and \uncovered hours" for the
classes (hours when in a class there is no teacher); at level 2 we considered didactical
and organizational requirements (e.g. not the same teacher every day at the last hour, a
uniform distribution of the hours of the same subject over the week, and so on); at level
3 we consider the distances between the current timetable and the preferences expressed
by each teacher for his/her speci�c timetable. We also de�ned a function connecting
generalized cost (to be minimized) with �tness function (to be maximized). Genetic
Operators. This point has required the adaptation of the standard mutation and crossover
operators. Moreover, a local search algorithm has been introduced as a further operator
which has two bene�cial e�ects: the �rst is to speed-up search (a possibility advocated
by several authors, see for instance [M�uhlenbein, 1989]), the second is the opportunity
to recover feasible solutions from unfeasible ones, when a speci�c �tness function is used
[Colorni, Dorigo, Maniezzo, 1990].
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4 Simulated Annealing

4.1 Features of the method

In order to apply any local search procedure to a COP, we must de�ne a neighborhood
N (i) of a feasible solution i 2 S. We believe that this is best done in an operational way,
saying that N (i) is a subset of S reachable from i by a speci�ed neighborhood exploration
algorithm: we call such a procedure, generating all neighbors j 2 N (i) in a certain order,
GEN(i; j). The output of a local search procedure, using GEN (i; j) is called a local
minimum with respect to N (i), since for all j 2 N (i) we have f(i) � f(j).

There are several ways of enhancing the quality of the solution. Simulated Annealing (SA)
is one of them, which introduces a more sophisticated way of moving from the current
solution to one of its neighbors, accepting with a certain probability to move also when
the quality of the new solution is worst than the previous one.

The origin of SA goes back to 1953 when it was used to simulate on a computer the
annealing process of crystals. The idea to apply this methodology to COPs came much
later [Kirkpatrick, Gelatt, Vecchi, 1983]. It is assumed that procedure GEN(i; j) randomly
generates j 2 N (i) with a uniform distribution over all members of N (i). Let � be the
di�erence f(j) � f(i): the probability that the algorithm accepts j as the new current
feasible solution is given by

Probfj after ig =

(
1 if � < 0
e��=t if � � 0:

(1)

In the classical SA algorithm this process should continue in principle until equilibrium
is reached. Then the control parameter t (often called \temperature", remembering the
origin of SA) is decreased and another sequence of iterations begins. The whole procedure
stops when t is so small that (in practice) j is accepted only if � < 0, in which case SA
is not di�erent from the local search procedure. A pascal-like code for SA is reported in
�gure 4.1.

In this code g(:) is the updating rule for parameter t, often simply t := at with some
constant a < 1. The logical 
ag � remains TRUE only if no movement has been accepted
during a full sequence of iterations at the same temperature t. The most \mysterious"
part of �gure 4.1 is the subroutine EQUILIBRIUM utilized to decide when t has to be
updated. The veri�cation of a true equilibrium condition is indeed often quite di�cult. A
simple way-out is to introduce another parameter H, which �xes the maximum number
of iterations to be performed at constant t (likely depending on the number of variables
of the COP considered).
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repeat
� := TRUE; ` := i ;
repeat

GEN(i; j);
if f(j) < f(`) then ` := j ;
� := f(j) � f(i) ;
if � < 0 then set i := j and � := FALSE else do

generate q uniformly random in [0; 1);
if q < e��=t then set i := j and � := FALSE

until EQUILIBRIUM ;
t := g(t)

until � ;
output `

Figure 1: Simulated Annealing

It has been recognized long ago that the behaviour of SA can be modelled as a succession
of Markov chains, one for each value of t. Although theoretically very appealing, the
conditions for convergence of SA to a global optimum obtained in this way tell very little
about the way the algorithm will behave in practice. In fact in order to get probability
1 of converging to a global optimum we should stick to Markov chains with an in�nite
number of transitions and to a function g(t) for updating the temperature (a part of the
so-called cooling strategy) going to zero no more rapidly than O(1= log n) [Van Laarhoven,
Aarts, 1987]. These conditions are clearly impossible to satisfy in practice. What would
help is not a study of asymptotic convergence, as it has been done in the recent past,
but rather a deeper insight into the rapidity of convergence to the stationary distribution.
This is much more di�cult and very preliminary results have appeared for the moment
[Diaconis, Hanlon, 1992].

Cooling strategies. Given the situation previously summarized as far as theoretical
understanding of SA, we are bound to consider this method (as already pointed out in
the introduction to this section) as nothing but a randomized local search, whose control
parameters have to be chosen every time one wishes to apply it to an instance of a COP.
This set of parameters is called a cooling strategy and contains the following items: the
initial (high) value of the \temperature" to; the rule g(t) for updating t; the length H of
each Markov chain. A fourth item is often speci�ed, when the procedure of �gure 4.1 is
simpli�ed in its stopping criterion, and uses, instead of the logic variable �, the simple
fact that the temperature is low enough: in this case we need to specify also the �nal
(low) value of the temperature, tf .

Extensive experimentations [Van Laarhoven, Aarts, 1987] have pointed out that the choice
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of the cooling strategy is crucial for the success of the SA algorithm, which may arrive
at very good quality of solutions, at the expense of quite large computing times. They
suggest a polynomial-time cooling schedule and specify how to obtain the values of the
parameters once the problem and its neighbourhood have been decided.

4.2 Application to Dial-a-Ride problems

A very great number of SA applications have been produced in many di�erent �elds
[Aarts, Korst, 1989]. From these, we discuss here the dial-a-ride (DaR) problem for two
reasons: because it is one of the more complex models in vehicle routing and because our
research group developed real applications in weak demand zones and in urban areas of
Italy as non-conventional public transport systems [Colorni, Laniado, Vittadini, 1990]. In
[Van Laarhoven, Aarts, Lenstra, 1988] one can �nd other applications of SA to problems
considered in this paper.

A DaR problem is de�ned by three types of data [Psaraftis, 1983]:

(a) a network R of r nodes, with minimum distances dij between every pair of
nodes (i; j = 1; : : : ; r) and di�erent speeds �(�) that permit the computation
of di�erent running times �ij(�) in various day periods (� = 1; : : : ;�; usually
at least two periods can be considered, the normal and the congested situation,
but for sake of simplicity in the following we will consider a unique situation,
the normal one);

(b) a set N of n customers, such that for each customer k (k = 1; : : : ; n) we de�ne
the node ik of pick-up, the node jk of delivery, the earliest time �1k of pick-up,
the latest time �2k of delivery, eventually the number �k of passengers;

(c) a service 
eet M of m vehicles, with capacity q` and depot node i` (` =
1; : : : ;m).

A DaR service can be studied with a static or a dynamic model: in the static model the
requests (ik; jk; �1k; �2k; �k) of all the customers are known in advance, in the dynamic
one the calls of the customers can arrive during the service (hence every call could be the
last of the period and it is not possible to forecast the future pattern of the requests).

In a static problem four di�erent objective functions are possible:

� f1 (to be maximized) = the number of customers accepted by the service;

� f2 (to be maximized) = the quality of the service, measured by the average of the
quality levels for the accepted customers;
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� f3 (to be minimized) = the number of vehicles actually used for the service;

� f4 (to be minimized) = the total length (or the total time) of travel for the vehicles
of the 
eet.

Although the function f4 is the most studied, in real applications a mix of f1, f2, f3 is
the actual objective of the planner.

In the dynamic model with a real-time management of the service, usually m is �xed (so
the value of f3 is a constant), the total length is not so important (so the function f4 can
be disregarded), the number n of customer is unknown (so the function f1 is considered
only as a general target), the function f2 (level of quality) is the real objective of the
problem.

A reasonable measure of the service level of quality for the customer k is a ratio between
the sum of his waiting and riding times and the theoretical time �ikjk of the travel. Notice
that with this de�nition the level of service for customer k, here indicated as losk, must
be minimized. The values of losk is constrained as follows

1 � losk � GLOS k = 1; : : : ; n (2)

GLOS being the guaranteed level of service, a parameter that permits a tradeo� between
acceptance of many customers and quality of the o�ered service: the customer k is rejected
if no vehicle is able to serve him with a losk not greater than GLOS; hence a small value
of GLOS supplies an high quality service for few customers (with many rejected ones),
whereas a large value of GLOS supplies a poor quality service for several customers.

Problem constraints are the following:

� pick-up node ik must precede delivery node jk for every customer k;

� customer k is accepted if there is a vehicle ` that permits losk � GLOS;

� for vehicle `, times �ik and �jk (transits to nodes ik and jk) are such that

�1k � �ik � �jk � �ikjk � �2k � �ikjk

� the capacity constraint of vehicle ` is always satis�ed;

� total service time during a day is considered.
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The DaR problem is a particular, highly constrained case of multi-vehicle routing, with
time windows and priorities. The problem is NP-hard [Desrochers, Lenstra, Savelsbergh,
1990; Laporte, 1992]: its di�culty implies the mandatory choice of heuristic methods for
solving it in real cases.

Our attention is now devoted to the use of SA techniques for the solution of the dynamic
case: our objective function is then to minimize the average losk

LOS =
1

h

hX
k=1

losk;

considering that the number of calls h is not \a priori" known, so that the mean must be
computed again at every new call in the following way.

At the arrival of a new call k the solution method must de�ne:

(a) the best assignment of the call to a vehicle (assignment phase)

(b) the new routing of the selected vehicle (routing phase).

The second phase (routing) is the core of the solution method. The new call k (with its
nodes ik and jk) is randomly inserted in the schedule of vehicle `, obtaining an initial
solution; then a search is made in the permutation space of the nodes corresponding to
pick-up's and deliveries of all the customers (the already accepted customers and the new
one). A metric in this search space is de�ned so that the distance between two solutions
is the minimum number of node swaps.

The search for a �nal solution in this space is made according to the SA rules explained
in 4.1. When a permutation j is not feasible the objective function LOS = f(j) is forced
to a big value (for instance, 1000). The generation is uniform on the solutions that are
adjacent (distance =1) to the current one. The accepting rule has a standard cooling
strategy, with temperature decreasing as tn+1 = �tn (with � = 0:95) and maximum
number of iteration H = 10 (this value has been chosen taking into account an average
number of pick-up and delivery nodes for small DaR cases). An improvement with respect
to the random initialization step has been obtained considering as initial solution, for the
new call k, the best solution found for the previously accepted k � 1 customers.

The DaR problem with a SA method for the routing phase was studied in two di�erent
real situations: a rural area with weak demand in Val Nure (a valley of Northern Italy)
for which a DaR service has successfully substituted the public transport system since
1989, and a district of the city of Milan for which the DaR service is presently simulated
as a reinforcement of the regular service.
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In the case of Val Nure [Colorni, Laniado, Vittadini, 1990] the network had approximately
r = 90 nodes, the number of vehicles was m = 5 with q` = 17 seats, the average number
of calls per day was approximately n = 50 (afterwards n = 100) gathered in the �rst
hours of the morning; the result was a service with LOS < 2 (considered a very good
performance by the population); calls were processed in real time by a software running
on a normal PC-IBM.

5 Sampling & Clustering

5.1 Features of the method

The well-known heuristic called multistart (MS) provides perhaps the simplest example of
a local search approach randomized to solve hard COPs. This procedure is characterized
by a global phase which randomly generates a �xed number K of new starting points in
the solution space S, then by a local phase consisting of a simple deterministic local search
applied to each point. The local phase gives rise to a set of new locally optimal solutions,
to be added to the current set of local optima. The whole process is repeatedly applied
until a test phase stops the algorithm whenever the set of local optima is not changed
during the last set of local searches (or after a �xed number of iterations).

In the Sampling and Clustering (SC) method [Boender, Rinnooy Kan, Timmer, 1982;
Rinnooy Kan, Timmer, 1987], the global phase is rather sophisticated, whereas the other
two phases remain simple.

There exists a number of settings in which a pure local search algorithm repeated starting
from several starting points, randomly generated uniformly in S, yields too often the same
local optimum. The basic idea behind the SC method is to try to identify clusters of initial
points which would lead to the same local optimum, thus reducing the computational
e�ort: a successful clustering should eliminate the repetition of the local phase for many
points without worsening the result.

A SC method for a COP [Camerini, Colorni, Ma�oli, 1986] uses the following disjoint
sets:

� a set Y of points from which a search for a local optimum can start;

� a set Y � of local optima;

� a set Y of points such that a search starting from them leads to a previously found
point of Y �.
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The element of Y are called candidate points, and those of Y � [ Y are called seed points.
The sets Y; Y �; Y are initialized to �. In each iteration of the main loop of SC the global
phase consists of the following steps:

1. randomly generate K new points from S and add them to Y ;

2. eliminate from Y a fraction 
 of points which have worst values of the objective
function;

3. cluster (according to a suitable clustering rule) as many points of Y as possible
around the seed points.

If some points of Y remain unclustered, the local phase begins selecting the best candidate
among these points and executing a local search until a local optimum is found. If this
optimum is a new one it is added to Y �, otherwise the starting point is added do Y . This
step is then repeated until all candidate points have been clustered.
The test phase stops the algorithm whenever, having succeded in clustering all points of
Y , no new local optimum has been found,i.e. the set Y � has not changed.

Several clustering rules are possible, and all of them are based on the idea of distance
between the points in S. For many COPs it is possible to de�ne a one-to-one correspon-
dence between solutions in S and m-dimensional boolean vectors: if this is the case, it
is quite natural to measure the distance between two solutions (s1; s2 2 S) by the Ham-
ming distance �(y1; y2) between the corresponding boolean vectors y1; y2 in f0; 1gm. For
examples of clustering rules see [Boender, Rinnooy Kan, Timmer, 1982] and [Camerini,
Colorni, Ma�oli, 1986].

Let us observe that SC algorithms strongly depend on the assumption that the solutions
can be randomly generated uniformly in S. For many COPs it is easy to randomly
generate solutions uniformly, but not randomly generate feasible solutions uniformly. In
these cases we have to decide if the method has to waste time in checking feasibility and
penalizing the unfeasible solutions or if it is preferable to relax the uniformity assumption.

Quite naturally, SC method better �ts problems for which the cost of computing a local
optimum from a given starting solution is (on average) higher than the cost of clustering
a given solution.

5.2 Application to Communication Spanning Tree problems

The communication spanning tree (CST) problem [Camerini, Fratta, Ma�oli, 1979] is
an NP-hard network design problem which can be stated as follows. Given a graph
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G = (N;A), with two cost functions C : A! IR and F : A! IR, and a weight function
D : N ! IR+, �nd a spanning tree G� = (N;A�) minimizing

X
a2A�

[F (a) + C(a)
X

(x;y)2Sa

D(x)D(y)] (1)

where Sa is the set of all pairs (x; y) 2 N �N such that arc a belongs to the path joining
x and y in G�.

In order to apply a SC algorithm to a CST problem we need only to de�ne a local search
procedure for it, i.e. a neighborhood structure. Given a solution i 2 S we de�ne N (i) in
the following way

N (i) := fjj�(i; j) � hg (2)

where �(x; y) denote the Hamming distance between two boolean vectors x and y, each
representing a tree, and h is a parameter. With this structure we say that a point p is
h�optimal when it yields the best value of the objective function among all points in the
solution space at a distance � h from it. Let us observe that since h is �xed, the number
of points at a distance � h from any given point grows polynomially with the problem
size, and therefore h � optimality can be checked in polynomial time.

In order to compare multistart approach and SC, the two methods have been applied to a
set of 18 instances of CST problem [Guastalla, Villa, 1985]. A �rst kind of instances has
been obtained by randomly selecting n nodes in a 10 �10 grid-type structure: n could
assume the values 10, 20, 30 and 40. In a second type of instances the nodes of the graph
were the 20 administrative centres of Italian regions. Results show that SC guarantees
solutions of the same quality of multistart within smaller amount of time (the saving
in computing time is around 30%): this is obviously not a very promizing experimental
behaviour. Nevertheless we believe that some of the key features of SC deceive to be
reconsidered for future developments of metaheuristics for COPs.

6 Tabu Search

6.1 Features of the method

Tabu Search (TS) [Glover, 1989 and 1990] is a metaheuristic which is concerned with
imposing restrictions to guide a search process. These restrictions operate in several
forms, both by direct exclusion of search alternatives, classed as \tabu", and by modifying

18



evaluations and probabilities of selection of such alternatives. Here we will characterize TS
as a local search optimization method, but we have to stress that constructive procedures
may be guided by this approach.

Let S denote the set of feasible solutions of an instance of a COP, and let N : S ! 2S and
f : S ! IR denote a neighborhood and a cost function on S, respectively. In the context of
TS the function N is given by de�ning a set of modi�cations (moves) of a feasible solution
which lead to other feasible solutions, i.e.

N (i) := fj j j 2 S; there exists a move from i to jg: (1)

The fundamental element underlying TS is the use of 
exible memory. Taking into account
the history of the search process by taking note of recency, frequency, and quality of the
moves applied up to the current iteration, the memory structures operate by modifying
the neighborhood N (i) of the current solution i and the cost f(j) associated to each
element j 2 N (i): the optimization approach operates by selecting at each iteration the
best evaluated solution in the modi�ed neighborhood.

A chief mechanism for exploiting memory in TS is to classify a subset of the moves de�n-
ing the neighborhood N (i) of a current solution i as forbidden (tabu): the method forbids
moves with certain attributes, with the goals of preventing cycling and guiding the search
towards promising or unexplored regions of S.
A principal notion of recency-based TS memory is the tabu tenure of an attribute, which
identi�es the number of iterations the attribute remains tabu-active (where a move is
classi�ed tabu if a speci�ed number or subset of its attributes are tabu-active). The
tabu tenure can vary according to the role the attribute plays in the move. For example,
attributes that strongly restrict the available moves when treated as tabu-active are cus-
tomarily given a shorter tenure than those that weakly restrict the available moves. Tabu
tenure also often is allowed to vary about a \preferred central value" (which depends on
the type of attribute considered) by allowing a small deviation from this value, determin-
istically or randomly generated when the attribute becomes tabu-active.
Memory structures to record the current tabu tenure of an attribute need only specify
the largest iteration that the attribute will be tabu-active, since comparing this value to
the current iteration immediately discloses the current tabu-active status. Corresponding
arrays can be used to maintain various forms of frequency information associated with the
attributes for use in longer term memory. Where many attributes exist, so that a separate
tenure memory for each may be expensive to maintain, a memory structure called a tabu
list is sometimes used. Such a list contains precisely the attributes that are currently
tabu-active, together with their associated \�nal tabu-active iteration". The information
about iterations can be dropped if all attributes receive the same tenure, since then the
attributes can be added and dropped from the list in a simple revolving fashion.

Tabu restrictions can be violated under certain circumstances. For example when a tabu
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move would result in a solution better than any visited so far, its tabu classi�cation may
be overridden. Similar conditions are called aspiration criteria.

The combination of recency based memory with frequency based memory adds a compo-
nent that operates over a longer horizon. One can memorize for each attribute its relative
frequency, i.e. how often an attribute belongs to applied moves: in all occasions where no
admissible improving moves exist, the frequency information will modify the evaluation
f(j) of the elements j 2 N (i) by adding to f(j) a penalty which depends on how often
the move from i to j has been already applied. This is a way to implement a diversi�ca-
tion strategy, to drive the search towards unexplored regions.
A di�erent idea is to combine frequencies of attributes and quality of associated solutions:
when no admissible improving moves are available one can prefer those moves contain-
ing attributes with greater frequency counts and higher evaluations. This is a way to
implement an intensi�cation strategy, to let the search converge towards more promising
regions.

A hybrid approach that combines ideas from SA and TS has been proposed by Faigle
and Kern [1989], which combines frequency information with the random sampling and
temperature-based acceptance criterion of SA. The use of random sampling in SA may
be contrasted with the use of probabilities in the TS variant called probabilistic tabu
search (PTS). This approach retains the strategy of examining elements from a candi-
date list (instead of randomly picking elements and accepting or rejecting them without
explicit comparison to other elements), and in addition strongly biases the probabilities
to favor choices that receive best evaluations. Thus, PTS makes no reference to temper-
ature and it takes account of TS memory by translating tabu status into penalties that
reduce the evaluations of moves considered. Aspiration criteria are allowed to ovverride
the probabilities, yielding a deterministic choice when the \winning move" is su�ciently
attractive. Recently PTS methods have been found e�ective in solving 0-1 mixed IP
problems, multidimensional knapsack problems and telecommunication problems.

Hybrids of SA and TS have also been proposed that expand the SA basis for move eval-
uations [Kassou, 1992], or allow the temperature to be strategically rather than mono-
tonically manipulated [Osman, 1993]. This strategic (nonmonotonic) manipulation of
temperature is an instance of a basic tabu search approach called strategic oscillation,
which more generally imposes controls that can drive solutions toward any away from
boundaries such as feasibility and infeasibility, or that can prescribe oscillations among
multiple choice rules, neighbotrhood types, and so forth.

A simple hybrid approach which combines ideas from GA and TS is obtained in this way:
�rst apply in a parallel framework tabu search to a set of starting solutions in order to
generate a set of good quality solutions; then apply GA to recombine the elements so
generated. The whole process is repeatedly applied using the recombined solutions as
starting ones [Norman, Moscato, 1991]. A second kind of hybrid is given by observing
that alleles of GA may be compared with attributes in tabu search: an hybrid method
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can be created introducing frequency based memory in GA to mark the history of alleles
over populations (see [Glover, 1994] for details).

Hybrid approaches combining TS and NN can be �nd in [De Werra, Hertz, 1989; Beyer,
Ogier, 1991].

Tabu search has been successfully applied in a lot of di�erent areas: scheduling, trans-
portation, layout and circuit design, telecommunications, graphs, expert systems, and
many others (see [Glover, Laguna, 1993] for a survey).

In order to give an idea of how some aspects of tabu search can be adapted to a particular
problem, in the following we brie
y describe a randomized tabu search algorithm for
solving the job-shop scheduling problem, as presented in [Dell'Amico, Trubian, 1993]; for
an application of frequency based memory to the same problem see [Taillard, 1994]; for an
algorithm that exploits the intensi�cation strategy of recovering elite solutions (together
with their associated TS memory), see [Nowicki, Smutnicki, 1993].

6.2 Application to Job-Shop Scheduling problems

The job-shop scheduling is an NP-hard COP that can be stated as follows. A set M of
machines and a set J of jobs are given. Each job consists of an ordered sequence (chain)
of operations from set O = f1; : : : ; Ng. Each operation i 2 O belongs to a job Ji and has
to be processed on machineMi for di consecutive time instants. The problem is to assign
the operations to time intervals in such a way that no jobs are pre-empted, no two jobs
are processed at the same time on the same machine, and the maximum of the completion
times Ci (i = 1; : : : ; N) of all operations (makespan) is minimized.

For a survey of local search algorithms applied to the job-shop scheduling see [Vaessens,
Aarts, Lenstra, 1994].

Neighborhood structures. A move consists in moving a candidate operation i from the
current position in its machine to a di�erent position. For example, given the sequence
of operations (a; b; c; d; i; e; f) the candidate operation i will be moved before b generating
the sequence (a; i; b; c; d; e; f). Observing that this kind of move can be decomposed in
the sequence of swaps: (d; i), (c; i), (b; i), we can memorize in the tabu list the reversal of
performed swaps: (i; d), (i; c) and (i; b). A candidate move is tabu if a component swap
of it belongs to the tabu list.

Tabu list. As data structure we use a square matrix T for each machine, with dimensions
equal to the number of operations processed by that machine. The element Tij contains
the count of the iteration in which the pair of operations (i; j) has been reverted last time.
We forbid a swap of operations (i; j) if the value of Tji plus the length of the tabu list is
greater than the count of current iteration.
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The length of the tabu list varies according to rules which depend on the fact whether
the current solution is better than the previous one or not.

Starting solution. To generate a feasible starting solution we applied a list scheduler
heuristic combined with a greedy random search method (GR), as given in [Hart, Shogan,
1987]. A GR is an alternative to a greedy heuristic in the sense that, instead of selecting
at each stage the decision with highest associated payo�, the algorithm randomly selects
a decision among a subset Q of the set of currently feasible decisions. The core of the
method is the way in which one can build up the set Q. Let us suppose that it is possible
to assign a value to each decision and that the priority of each decision depends on the
assigned value. The set Q is then given in two di�erent ways: it contains the decisions
with an assigned value within p % of the highest assigned value, or it contains the c
decisions with highest assigned value. Note that setting p = 0 or c = 1 trasforms this
random heuristic in a greedy one.

We decided to choose the randomized approach in the job-shop scheduling problem and
we have experimentally observed that it gives, on average, better solutions than the
corresponding deterministic version: at least one of the solutions generated applying less
than 10 times the randomized algorithm is better then the corresponding deterministic
solution. However this kind of randomized procedure does not guarantee to produce a
local optimum with respect to even simple neighborhood structures.

Computational results. The algorithm was tested on a set of 53 standard benchmark
problem instances [Dell'Amico, Trubian, 1993]. This TS algorithm �nds an optimal solu-
tion for 33 of 46 problems for which the optimal solution is known. For the 13 remaining
ones the approximation error with respect to the optimum is smaller or equal than 1 %.
The computing times are generally small and increase almost linearly with the number of
operations.

7 Neural Nets

7.1 Features of the method

A Neural Net (NN) is a set of elements or neurons, connected by links, weighted by a
real number wij and oriented (in general wij 6= wji). In the threshold nets every neuron
i computes the following two quantities: the activation level ui =

P
j wijxj � �i (which is

the weighted sum of the inputs coming from the other neurons decreased by a threshold
value �i) and the output xi, which depends on the activation level ui through a bounded,
non-decreasing, non-linear function. The net evolves by successive iterations according
to a transition rule. The computation of the state is done by each neuron locally and
independently. When the state of the net does not change, the net is in a stable state.
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Though being a fundamental feature of neural models, parallelism is not the most impor-
tant one; as a matter of fact the di�usion of neural models happens in spite of the need to
simulate them by sequential algorithms. One main feature of NN consists of the following
property: from the \simple" behaviour of local decision-makers (the neurons) and from
the structure of the connections between them (the topology of the net) a \complex" and
in some sense \intelligent" behaviour emerges.
In COPs neural nets allow to approximately solve problems, starting from their descrip-
tion in terms of variables space, constraints and objective-function, without requiring any
explicitely coded procedure; on the other side, the solutions are seldom comparable with
those found by ad hoc algorithms, both in terms of approximation and in terms of com-
putation time. Anyway this is true also for other general purpose heuristics such as SA
and GA. The application of neural nets to COPs was opened by [Hop�eld, Tank, 1985].
A review of neural models for COPs can be found in [Righini, 1992].
It is possible to distinguish two di�erent families of neural nets for optimization, the spin
glass models and the deformable models.

Spin glass models. This former class of models contains nets derived from the Hop�eld
model [1982; 1984] and the Boltzmann machine [Aarts, Korst, 1989]; Hop�eld nets and
Boltzmann machines are nothing but the deterministic and the probabilistic version of
the same neural algorithm, as it was pointed out in successive developments. In such NN
the data of the problem instance are used to build the network, which then evolves up to a
stable state. Spin glass models are inspired by the analogy with physical systems known
as spin glasses [Barahona, 1982]: techniques from statistical mechanics are therefore ap-
propriate to study their properties and behaviour. The convergence of a net is guaranteed
if there exists a Lyapunov function of the state, decreasing at each iteration and bounded
from below. In the physical analogy this function corresponds to the energy of the spin
glass. Since a net spontaneously tends to minimize its Lyapunov function, the idea is to
map the objective function of a COP on it. The evolution of the net represents then a
search in the solutions space, which converges to a local optimum. About the convergence
of NN, the reader is also referred to [Goles, Olivos, 1981]. The dynamics of the net can be
serial, parallel or mixed [Bertoni, Campadelli, 1990]. In the serial mode only one unit can
change its state at each iteration, in the parallel mode all units can change. The state of
every unit is a deterministic or probabilistic function of the state of all units linked with
it and of the connections.

Deformable Models. The second family of neural nets for COPs contains models de-
rived from Kohonen's self-organizing maps [Kohonen, 1984]; in such models the data of
the problem instance are used as inputs to the net. In its evolution the net modi�es the
values of the links weights. Such models are inspired by the capability of some cerebral
areas to learn the topological relations of external stimuli and to replicate them in their
interneuronal connections. Nets of this class are made of two layers fully connected with
each other and with no feedbacks. The state of the network is determined by the weights
of links instead of the state of neurons as in spin glass models.
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Deformable models are suitable for COPs with topological constraints, that are hard
to represent in spin glass models: the most interesting results of application of de-
formable models to COPs were obtained for the TSP: we cite the elastic net [Durbin,
Willshaw, 1987], the basic model of Kohonen and those directly derived from it [Ange-
niol, DeLaCroix-Vaubois, Le Texier, 1988; Fort, 1988].

Yuille [1990] and Simic [1990] showed that it is possible to obtain both elastic net and
Hop�eld-Tank net as particular cases of a more general model, named Generalized De-
formable Template.

Computational complexity of neural computation has been studied by [Wiedermann, 1990].
Bruck and Goodman [1990] proved that the computational power of a NN is not superior
to that of a Turing Machine: every task which can be performed by a NN can also be
performed by a classical sequential algorithm. It is also worth to notice that neural nets
do not guarantee any approximation bound (for instance "-approximation) nor any bound
on the number of iterations needed to converge to a stable state [Yao, 1992].

7.2 Application to Location/Allocation Problems

A class of problems that suggest a very straightforward implementation onto a NN is
that of assignment problems, including among the others linear assignment, quadratic
assignment and location/allocation problems. The application described here concerns
two location/allocation problems: the euclidean P -median and euclidean P -barycenter
problems.
N points, representing users, are given inR2 and P others (P < N), representing facilities,
must be located optimally. We indicate by ai the position of user i (i = 1; : : : ; N) and by
xj the position of facility j (j = 1; : : : ; P ). The objective functions to be minimized are
functions of the distances between every user and its nearest facility:

min f =
PP

j=1

PN
i=1 wijdij (medians) (7.1.a)

min g =
PP

j=1

PN
i=1wijd

2
ij (barycenters) (7.1.b)

(1)

PP
j=1wij = 1 8 i = 1; : : : ; N

wij 2 f0; 1g:
(2)

Facility j is allocated to user i if and only if wij = 1. The relaxation of the integrality
constraints over the wij allows the straightforward application of the Mean Field Anneal-
ing neural model [Peterson, Soederberg, 1989]: one neuron is de�ned for each variable
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wij; binary values for all wij variables are achieved only at the end of the computation.
Every wij variable is initialized around the value 1=P , with a small random noise, needed
to break the symmetry of the initial unstable equilibrium state. The updating rule, that
every neuron uses at each iteration, is the following:

wij =
e
� 1

t
@E
@wijPP

l=1 e
� 1

t
@E
@wil

(3)

where E coincides with f or g in (7.1). Such rule ensures that the values of the wij

are normalized, so that constraint (7.2) is satis�ed after each iteration. The parameter t
slowly decreases, and in the limit t! 0 all neurons assume binary values.
The optimal locations of a median and of a barycenter of N weighted points are given by
the following formulae, respectively:

xj =

P
i
wij
dij
aiP

i
wij
dij

(medians) (7.4.a) (4)

xj =

P
iwijaiP
iwij

(barycentres) (7.4.b)

From them is possible to obtain the expressions of the partial derivatives, which are not
reported here. All the P � N partial derivatives can be computed in parallel; moreover
every neuron provides a feedback onto all the others.

Experimental results and comparisons. Classical approaches to multi-facility location
problems in the plane are the iterative cluster-and-locate algorithm and heuristics based
on successive point insertions. A classical cluster-and-locate algorithm has been compared
with a Mean Field Annealing algorithm on 10 instances of a P -barycenter problem with
N = 20 and P = 5. As shown in table 7.1, the Mean Field Annealing algorithm found
solutions of much better quality. The annealing algorithm can be very time-consuming,
of course, but a suitable trade-o� between solutions quality and computing time can
be achieved by tuning annealing parameters (such as the initial temperature and the
annealing rate).
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Problem Cluster-and-Locate Mean Field Annealing
instance g t (sec.) n. iter. g t (sec.) n. iter.

1 0.654 1.54 3 0.577 16.58 18
2 0.591 1.60 3 0.347 23.29 25
3 0.528 2.03 4 0.489 18.57 20
4 0.529 1.59 3 0.547 21.53 23
5 0.493 1.54 3 0.301 23.45 25
6 0.336 2.09 4 0.285 22.41 24
7 0.566 1.09 2 0.273 19.60 21
8 0.452 2.09 4 0.461 17.63 19
9 0.662 1.60 3 0.577 21.59 23
10 0.684 1.09 2 0.458 16.58 18

Avg. values 0.5495 1.63 3.1 0.4315 20.12 21.6

Table 7.1: Comparison between Cluster-and-Locate algorithm and Mean Field Annealing
(NN) algorithm on 10 instances of P -barycenter problem with P = 5 and N = 20.

8 Ant System

8.1 Features of the method

In this section we illustrate a natural heuristic �rst introduced in [Colorni, Dorigo,
Maniezzo, 1991 and 1992]: the Ant System (AS). The basic idea underlying this heuristic
is that of simulating the behavior of a set of agents that cooperate to solve an optimization
problem by means of very simple communications. The natural metaphor we employ is
the ant colony metaphor. To illustrate the approach we use the traveling salesman prob-
lem (TSP), but the formulation can then be used for the solution of any COP requiring
the search of a node permutation in a graph.

Let us start with the following observation: real ants seem to be able to �nd their way
(from the nest to a food source and back, or around an obstacle) with relative ease, al-
though they are almost blind [Denebourg, Pasteels, Verhaeghe, 1983]. Ethological studies
discovered that this capacity is the result of the interplay via chemical communication be-
tween ants (through a substance called pheromone) and an emergent phenomenon caused
by the simultaneous presence of many ants. In our work we tried to reproduce this mecha-
nism in an arti�cial ant colony, which we call Ant System. More about the natural analogy
can be found in [Dorigo, Maniezzo, Colorni, 1996]. We now introduce the algorithm and
try to give a rationale for its functioning. Consider a TSP problem de�ned on a graph
G = (N;A) of j N j nodes and j A j arcs, where arc(i; j) connects nodes ni and nj and
has an associated real value dij = d(ni; nj). We must �nd a permutation � of the nodes
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that minimizes the quantity
PjN j

i=1 d(n�(i); n�(i+1)), where �(j N j +1) � �(1).

We de�ne an ant to be an agent with the following properties:

� the ant remembers already visited towns using an ordered list called tabu list (TL)
for this purpose (caution, TL here is di�erent from that of Tabu Search),

� at every step the ant chooses, using a probabilistic rule, a town to move to among
those not in the TL,

� after a tour has been completed the ant lays a trail �ij on each arc (i; j) used (trail
is the analog of pheromone) and clears its tabu list.

Figure 8.1 shows the pascal-like version of AS.

The probabilistic rule used as select function in step 2 is a Montecarlo procedure where
the probability to choose an unvisited town j as a destination is given by:

Prob(j) =
��ij � ��ijP

`62TL ��i` � ��i`
(1)

where �ij is the amount of trail on arc (i; j) and �ij is called visibility of node j from node
i, de�ned as �ij = 1=dij in the case of TSP. In �gure 8.1 the parameter � (0 � � < 1) is
such that (1 � �) can be interpreted as the evaporation of trail; the parameter �� is such
that initially the ants are free to move almost randomly; parameters � and � allow the
user to control the relative impact of the two criteria (visibility and trail intensity) used
in (8.1), Q is an arbitrary positive constant.

If we consider M ants moving on the graph G concurrently, then �ij is the way by which
ants communicate. In fact, as stated by the select function, ants choose with higher
probability edges with higher amounts of trail. Therefore, an ant laying trail on a set of
edges makes that set more \desirable" for other ants.

A way to interpret how the algorithm works is to consider the superposition of e�ects:
each ant, if it did not consider trail e�ects (i.e., if � = 0), would move with a local,
probabilistic greedy rule. This greedy rule will probably lead to bad �nal results. The
reason the greedy rule doesn't work is that an ant is constrained to make a closed tour
and therefore �nal steps are constrained by early steps. So the tour followed by a single
ant, according to a greedy policy, is composed by some (initial) parts that are very good
and some (�nal) others that are not. If we now consider the e�ect of the simultaneous
presence of many ants, then each one contributes to the trail distribution. Good sets of
arcs will be followed by many ants and therefore will receive a great amount of trail; bad
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1. �ij = 1=dij ; �ij := �� ;
2. for each ant k (k := 1 to M) do

TLk := (starting town of ant k)
while j TLk j< N do

select the town j to go to ;
add j to the ordered list TLk ;

Lk := length of the tour described by TLk;

�� kij :=

(
Q
Lk

if arc(i; j) belongs to the tour described by TLk

0 otherwise
��ij := ��ij +�� kij;

3. �ij := � �ij +��ij ;
4. if not (terminating condition) then go to 2 ;

Figure 1: Ant System

sets of arcs (chosen only in order to satisfy constraints) will be chosen only by few ants
and therefore receive a small amount of trail.

Experimental testing of the e�ectiveness of the AS could not be carried out on big TSP
instances. Current research on this problem deals with instances with more than 100,000
towns and we cannot use so much memory on our machines; moreover, the computa-
tional complexity of one cycle of the AS is O(N3), therefore the time needed to face very
big instances is prohibitive. We point out however that we never made an assumption
of symmetry of the graph: we devoted therefore our attention to the asymmetric prob-
lem (ATSP), for which specialized heuristics deal with instances with a few hundreds
towns.ATSP provides good instances to test di�erent versions of AS. We used a standard
problem, called RY48P [Fischetti, Toth, 1992], having an optimal value of 14422 obtained
by a branch-and-bound procedure but with a high computational time: the AS obtains a
value of 14537 (0.8 % worst) with 2000 cycles. Several extensions of the basic algorithm
have been tested. The �rst one consists of a constructive procedure that starts with a small
number of towns and adds the others one by one, allowing the ants to identify a good
trail distribution for each subproblem, to be used as a basis for the new subproblem with
one added town. The rationale was that search in the small initial space and successive
adaptations of partial solutions could be more e�ective than search in the huge complete
problem space. The second extension consists of a modi�cation of the trail levels when
a stagnation is detected. A stagnant behaviour is detected when the trail distribution
is such that all the ants follow the same tour. Since stagnation prevents further search,
partial trail reinitialization5 makes the system restart from a point still in the region of
the search space that was previously identi�ed as a promising one. The third extension

5Trail modi�cations are obtained with a change, for a small number of iterations, of the parameters
� and �, so that ants follow paths di�erent from those previously used.
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assigns speci�c � and � values to each ant and let it evolve by a genetic algorithm, with
a �tness function inversely related to the length of the tour proposed by the ant. The pa-
rameters are coded as bit strings, the system runs for a �xed number of iterations during
which the best tour and the average tour length of each ant are computed. This data is
the basis for the �tness function assessment. Standard GA operators can then be used.
Table 8.1 presents a comparison of the results obtained with the di�erent versions of the
AS (values are averages over �ve runs of each algorithm).

Tour length Error Iterations
Basic AS 14899 3.3% 1788
Constructive 14878 3.1% 5995
Trail modi�cation 14537 0.8% 1969
Genetic � and � 14997 4.0 % 1954

Table 8.1 : Ant algorithms on RY48P instance.

8.2 Application to Quadratic Assignment problems

The computational approach described in section 8.1 has been tested on other COPs
including the Quadratic Assignment Problem and the Job-Shop Scheduling Problem. A
Quadratic Assignment Problem (QAP) of order n is the formalization of the problem that
arises when trying to assign n facilities to n locations, where both the terms (facilities and
locations) are considered in the broadest sense of their meaning. Formally the problem
can be de�ned by three n� n matrices: D = fdijg is the distance between location i and
location j; F = ffhkg is the 
ow (of information, products or whatever) between facilities
h and k; C = fcihg is the cost of assigning facility h to location i. A permutation � can be
interpreted as an assignment of facility h = �(i) to location i, (i = 1; : : : ; n). The problem
is then to identify a permutation � of both row and column indexes of the matrix F that
minimizes the total cost [Edwards, 1977]:

min z =
nX

i;j=1

dij f�(i) �(j) +
nX
i=1

ci�(i) (2)

Usually D and F are integer-valued symmetric matrices and the matrix C is not consid-
ered. In our application of the AS to QAP, the visibility �ih represents an estimate of
the goodness of assigning facility h to location i and is expressed by a combination of the
potentials of the distance matrix and 
ow matrix: these potentials d and f are de�ned as
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row sums of each matrix. For example:

D =

2
6664
0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0

3
7775 ! d =

2
6664

6
10
12
14

3
7775 ; F =

2
6664

0 60 50 10
60 0 30 20
50 30 0 40
10 20 40 0

3
7775 ! f =

2
6664
120
110
120
70

3
7775 :

From the two vectors d and f , a third matrix S = d � fT is obtained, where each element
sih = di � fh:

S =

2
6664

720 660 720 420
1200 1100 1200 700
1440 1320 1440 840
1680 1540 1680 980

3
7775 :

The ants choose the node to move to on the basis of (8.1) in which �ih = 1=sih, interpreting
each element �ih as the attractiveness of the choice of assigning facility h to location (node)
i. For example, 1/420 on the �rst row is linked to the choice of assigning function 4 to
node 1, it is considered more attractive than the choice of assigning function 3 to node 1
(�13 = 1=720).

In the �rst step each ant chooses via a Monte Carlo procedure on the elements of the
�rst row of S the node to start from; the generic k-th step, consists in choosing with
a similar procedure which element of the k-th row to move to, excluding those of the
columns already visited. The usual trail updating procedure is applied on another matrix,
interpreting its elements as trail levels on corresponding graph edges. This algorithm has
been included in a system, called ALGODESK, designed to compare the e�ciency of
di�erent heuristics [Maniezzo, Dorigo, Colorni, 1995]: it has been found that the AS,
coupled with a greedy procedure that optimizes locally the permutation proposed by each
ant, is one of the most e�ective among the heuristics tested on a large set of QAP instances
of dimension up to 30 of the QAPLIB library [Burkard, Karish, Rendl, 1991].

9 Conclusions

In this paper we have shown the main characters of a set of non-deterministic algorithms
derived by natural systems, applying them to the solution of some well known NP-hard
COPs. In other papers, we also tested natural heuristics on di�erent speci�c problems
(for example QAP [Maniezzo, Dorigo, Colorni, 1995]), with the aim of designing a real
comparison environment. Here we try to describe the connections and the similarities of
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di�erent methods: on this subject, the reader can also see [Aarts, Korst, 1989; Reeves,
1993].

The basic idea of Heuristics from Nature is that it is possible to simulate many aspects
of natural systems, in particular the two natural engines of selection (corresponding to
optimization) and mutation (corresponding to random search).

In table 9.1 we propose our understanding of the current situation of research on Heuristics
from Nature. Columns represent the methods and rows describe four progressive steps
(which are very common in developing research sectors). They are:

[ 1 ] the presence of practical results;

[ 2 ] the de�nition of a theoretical framework;

[ 3 ] the availability of commercial packages;

[ 4 ] the study of computational complexity and related properties.

In the table, the symbol XXX means a well de�ned situation (with low level of likely
future developments), the symbol /// means a dynamic situation (with large possibilities
of novel research), �nally the symbol : : : means a birth situation (with a very big amount
of work still to be done).

SA TS NN GA SC AS
[1] results XXX /// /// /// /// : : :
[2] theory XXX /// /// /// : : : : : :
[3] packages /// /// /// : : : : : :
[4] complexity /// /// : : : : : :

Table 9.1 - A summary of research perspectives in Heuristics from Nature.

The table we present here is largely subjective. The aim of the table is only a synthetic
representation of the state of the art from the point of view of our research group, given
the current lack of any wider agreement on this point. We present it as a basis for
discussion on this point. Future works will be the design of \hybrid" algorithms that
cross strong ideas of the methods presented here, the study of new applications in NP-
hard problems, the construction of packages in which the parallelism of the methods could
be implemented.

Many questions remain and many problems are open: as a �nal remark we propose a brief
catalogue of them.
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1. The learning procedure: in what conditions a self-organization of the system is
possible?

2. The evolutionary mechanism: what is the role of cooperation and competition mech-
anisms ?

3. The search strategy: what is the trade-o� between exploitation and exploration
phases ?

4. The role of experience: how do you operate in parameter tuning, for balancing
convergence speed and good results ?

5. The running conditions: how is the topology of the problem in
uencing the process
and the �nal solution ?

6. The data collection: you have a very big amount of information, what data do you
collect and which results do you present for a good observation of the system?
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