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Abstract—The use of radial basis function (RBF) networks gravity-induced antenna deformations and wind, greater sen-
and least squares algorithms for acquisition and fine tracking sitivity to misalignments of the radio-frequency (RF) compo-
of NASA's 70-m-deep space network antennas is described andpanis and more stringent pointing requirements—all of which
evaluated. We demonstrate that such a network, trained using the . . . . . .
computationally efficient orthogonal least squares algorithm and are further complicated by tlm.e-varylng distortions 'mpose‘%' on
Working in Conjunction with an array feed Compensation System' the antenna structure. Even in the absence Of eXtel’na| d|StUr'
can point a 70-m-deep space antenna with root mean square bances, such as wind, time- and elevation-dependent loss com-
(rms) errors of 0.1-0.5 millidegrees (mdeg) under a wide range ponents are introduced by gravity as the antenna tracks the target
of signal-to-noise ratios and antenna elevations. This pointing (yyhether it is a spacecraft or a radio-source). The combination

accuracy is significantly better than the 0.8 mdeg benchmark for L
communications at Ka-band frequencies (32 GHz). Continuous of these factors can lead to unacceptably large pointing errors

adaptation strategies for the RBF network were also implemented and signal-to-noise-ratio (SNR) losses if left uncorrected.

to compensate for antenna aging, thermal gradients, and other  Recovery of SNR losses due to gravitational deformation has
factors leading to time-varying changes in the antenna structure, peen addressed in [1]-[3]. Here, we consider the problem of
resulting in dramatic improvements in system performance. The acquiring and tracking spacecraft with sufficient accuracy to

systems described here are currently in testing phases at NASA's L - -
Goldstone Deep Space Network (DSN) and were evaluated usingmalntaln acceptably small pointing losses (hominally 0.1 dB)

Ka-band telemetry from the Cassini spacecraft. on large DSN antennas.

Index Terms—Adaptive, antennas, array feed, deep space
network, NASA, neural networks, orthogonal least-squares, radial
basis function (RBF) networks. A recently developed approach for recovering losses due to

gravitational deformations, thermal distortion and wind consists
of a real-time compensation system employing a seven-element
array of feeds in the focal plane of the antenna’s subreflector [1].
HE NASA Deep Space Network (DSN) is an internationafhe array feed compensation system (AFCS) has been evaluated
network of steerable high-gain reflector antennas, whiclt the DSN’s Goldstone complex, and has successfully demon-
supports interplanetary spacecraft missions, radio and radarstsated real-time gravity-compensation and closed-loop tracking
tronomy observations for the exploration of the solar systemf, spacecraft and radio-source signals at Ka-band frequencies
and select Earth-orbiting missions. The DSN currently consigtsominally 32 GHz). Its application to recovering losses due to
of three deep-space communication facilities, placed apprarechanical antenna distortions at high frequencies (32 GHz or
imately 120 apart around the world; at Goldstone, in Calihigher) is described in [2] and [3].
fornia’s Mojave Desert; near Madrid, Spain; and near CanberraA conceptual block diagram of the Ka-band AFCS designed
Australia. This strategic placement permits constant observatf@fithe DSN’s 70-m antennas is shown in Fig. 1. Its main compo-
of spacecraft as the Earth rotates, and helps make the DSNRR8Ls are an array of seven 22 dBi horns with a separate Ka-band
largest and most sensitive radio science and telecommunicatitfié noise amplifier (LNA) connected to each horn; a seven-
system in the world. channel downconverter assembly that converts the 32 GHz RF
Over the past years, there has been increasing interesBigal to 300 MHz IF (intermediate frequency), followed by a
the use of shorter carrier wavelengths to enhance the DSF&/EN-channelbaseband downconverter assembly thatgenerates
telecommunications and radio science capabilities. Shorfgt re_al (seven complex) baseband signals. A digital S|.g|.1al pro-
carrier wavelengths, or equivalently higher carrier frequencietiss'_ng assgmbly then gxtracts p_arameters fTO.m the Q|g|tal sam-
yield greater antenna gains and increased useful bandwi(ﬁ sin real-ﬂme to Obtam.th? optimum combining Welghts' and
with reduced sensitivity to deep-space plasma effects, that tene&ermlne the antenna pointing updates needed to maximize the

: ; . combined SNR.
to degrade the quality of the received signal. . . .
. : In the absence of antenna distortions, a single properly de-
However, there are also new problems associated with the - . .
. . . signed receiving horn collects virtually all of the focused signal
use of higher carrier frequencies, namely greater losses dué : ) e
power. Distortions generally lead to a shift in the peak of the

_ _ . signal distribution, as well as a redistribution of the signal power
Manuscript received December 4, 2000; revised July 16, 2001.  ip the focal plane. This leads to loss of power in the central
The authors are with the Jet Propulsion Laboratory, California Institute oh | which b d by th h f

Technology, Pasadena, CA 91109 USA (e-mail: payman@ijpl.nasa.gov). channel, which can be recovered by the outer horns of an array

Publisher Item Identifier S 1045-9227(02)01801-5. placed in the focal plane. When the horn signals are multiplied
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Subrefiector depend on the distortion of the antenna, and also on the pointing
?ignal > - offset.
fields N % Each channel is downconverted to an intermediate frequency
! " of 300 MHz, after which spacecrdfequency predictsderived
from the known spacecraft trajectory are applied and the signals
AN are downconverted to baseband. The resulting complex base-
band signals are sampled and “frequency-locked” using a digital
frequency-lock loop which eliminates any remaining frequency
. Lo Amay R, offsets.
’\ / \ Y The complex samples so obtained remain essentially con-
szalint R RO S S SNy stant over time-scales of minutes, depending on the antenna dy-
retlector

Yvy

namics, and contain all of the amplitude and phase information
used by the tracking and combining algorithms [3]. During ac-

E')-NAS tual tracking, sampling rates of 128 samples per second are typ-
sl o ical. These samples can be represented as
300 MHz IF e .
YVYY () = 8(0) +7p(d) £=1,2,3,...,7 ieZ (4)
14 ADCs
Digital where
Array geomet signal
v9 &4 processing (i) = Speit )
Combined Pointing i
Channel Updates with

Fig. 1. Conceptual block diagram of the array feed compensation system. E[ﬁk(L)] =0 and E[H Tk (L) ||2] = Var[;k(L)] =0’ (6)

b | bini iah hed he | We assume that noise samples from different channels are in-
y complex combining weights matched to the instantaneos endent, as are different noise samples in the same channel,

magnitude and phase of the signal in each channel, the SNR,gl the amplitude and phase of the signal are assumed constant

the combined channel can be improved, approaching that ofgp. the sampling intervals. It is convenient to represent the re-

undi_stort_ed antenna under idea_l cpnditions. . ceived samples as seven-dimensional complex vectors of the
Distortions also affect the pointing of the antenna by '”tr%rm £(i) = 8(i) + 1(4), wherei (i) = (7(4), 72(4) Fo(0))
. . . . .. - ) - bl LR R
ducing shifts in the signal peak. Aptenna pointing errors can d&id where each component is defined as in (5). In order to re-
grade the received SNR of both single horn and array receivejg e the effects of noise, the training data set was formed by

particularly at Ka-band or higher frequencies. We shall demog\-/eraging the received samples over a large number of consec-
strate that properly designed neural network and Ieast-squehrfﬁe received vectors

algorithms effectively remove the time-varying pointing errors,

and keep the antenna pointed in the direction of maximum SNR t0(GL) = (Far(GL), Fa2(GL), - - ., Far(GL))
even in the presence of significant antenna distortions. ' 7 il 7 7
1
= i) §7=1,2,3,... 7
B. Signal Modeling L Z @ J 7)

i=jL—L+1

When the antenna is pointed toward a source such as adis- » )
tant spacecraft, the “residual carrier” portion of the signal caieret.(;jL) is the complex averaged vector at timé, with
be filtered out and used to estimate the desired parameterd s referring to itskth complex componentiar(fa, (L)) =

shown in [1]. The signal in thé-th channel (out of seven) can®"/L, ando? is the variance of the additive white Gaussian
be represented as noise samples. Thus, with = 128, one-second updates are

generated, whereas with= 1280 the effective integration time
re(t) = si(t) +n(t) k=1,2,3,...,7 (1) is10s. Note that as pointed out above signal amplitigesnd
phased, are assumed to remain constant over these observa-
where the real signal and background noise components areta#s.
fined as
C. Problem Statement

si(t) = V28 cos(wt + b) (@ The instantaneous pointing error vector of the antenna can
n(t) = V2[na(t) cos(wt) — na(t) sin(wt)] (3) be represented aXEL, EL), a two-dimensional error vector,
whereXEL is the incremental pointing error in cross-elevation,
wheren(t) andng(t) are uncorrelated baseband random pro-

cesses representing the in-phase and quad rature com ponentsl'BTese are predictions of the received spacecraft carrier frequency during the
tracking period. The relative motion of the spacecraft, along with Earth’s ro-

the noise, and represent; the Ka-band (32 GHz) Carlrier fret?ation, cause the observed carrier frequency to change as a function of time,
qguency [4]. Both the amplituds; and phasé),, of the signal making accurate prediction necessary for acquiring and tracking the signal.
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i i inti i i Input layer Radial Basis
andEL is the incremental pointing error in elevation measured (Hidder) Layer

in millidegrees (mdeg).

We seek to compute the mapping from the seven-dimensional
averaged voltage vectoy, to the two-dimensional error vector
(XEL, ED), as represented by

Linear Combiner

. XEL
f(t.) — |: 7L :| .
Residual errors in the voltage vectty due to noise cause

errors in the estimate oKEL, EL even if f(r,) is known ex-
actly. Howeverf(r,) is also affected by the physical structure
of the antenna, which is not always precisely known and which
changes as the antenna ages or is buffeted by wind. The noisy
and time-varying nature of(r,, ) poses an additional challenge.
Previous work has demonstrated successful application of in-
terpolated least squares and radial basis function (RBF) net-
works to correction of antenna pointing errors, based on data
from the AFCS, and with the aim of achieving maximum com-
bined SNR [5], [6].
Two distinct problems will be considered here: acquisitiopig. 2. RBF neural network diagram showing the input layer, the hidden
and tracking. The acquisition problem involves the estimation @fdial basis) layer, and the output layer (linear combiner) along with the bias
antenna-pointing offsets over a wide range. For instance, if {5Em

antenna’s pointing has drifted by 4 mdegXkL and—3 mdeg

in EL, an acquisition algorithm must be able to estimate t#necessary to provide this input to the network. This normal-
offset vector(4, —3) accurately in order to repoint the antennéZation eliminates some of the possible time-dependent varia-
in the correct direction. Otherwise, a severe loss of signal powgns in the received signal, at the cost of a slight reduction in
would result due to the 5 mdeg pointing error magnitude onthe total information presented to the algorithms. The network’s

70-m antenna, which typically has an 8 mdeg beamwidth at 4®puts, therefore, consist of the real and imaginary components
elevation. of the six normalized horn voltages from the outer horns, for an

The second problem, tracking, focuses on significanti{,’pUt vector dimension of 12 as shown_ in Fig. 2. The network
smaller offsets. After the antenna has been correctly pointé@S trained to generate values for the incremeftaand XEL
on source by the acquisition algorithm, it remains necessaryd$sets corresponding to these inputs. .
keep it pointed on source to within one mdeg total pointing error Each of theM/ radial basis units implements a Gaussian func-
despite slow drift in antenna pointing. Accordingly, the trackin§on of the form
algorithm must estimate small pointing errors near the ce_nter of G(Fq(jL); c;) = exp (—(b | £(jL) — c; ||)2)
the XEL, EL) space accurately, and correct them in real time.

12 2
[l. TECHNICAL APPROACH =exp | — <b’;(7’a(JL)k - Cik)) 9

Two approaches, one involving a radial basis function net-

work and the other a quadratic interpolated least squares l’é(ner?za(jL) '; the zZ—eI?miEt.?hverzgﬁilnputvoI:age \r;?jitor at
gorithm, were developed to synthesize the functjéi,) de- "M¢J [see (7)],c; denotes théth radial basis center, a

scribed by (8). Descriptions of both are given below, followed b%8326/ o, controls the width of the unit's region of response.
|

(8)

1 1 4 n - . j— = —_
results and analysis from extensive experiments on real-woylf€ Scalap is defined so thati(ra(sL); e;) = 0.5 wheno, =

) jL) —¢; ||
and simulated data. Fo(JL) — € _ . -
Defining the matrix of hidden layer responses, in Fig. 2o
A. Radial Basis Function Networks consecutive input vectors as shown in (10) at the bottom of the

- 8age and defining the linear combiner weight matrix as
1) Description: A RBF network was developed and used t

estimate antenna pointing errors [7], [8]. The complex voltage w1 w21 -.. WML Chiasl T (11)
of the center horn was always normalizedite 0, making it W= Wi2 W22 ... WM2 Chbias,2
G(t,(L);¢c1) G(t,(L);ca) ... G(F.(L);en) 1
G(r,(2L);¢1) G(t.(2L);c2) ... G(r.(2L);ep) 1 (10)
= . . ) . . 1

GE(NL)ie1) Glia(NL)ics) ... GEa(NL)icn) 1
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the output of the radial basis network in response ta¥hiaput avoid the need to generate an entirely new radial basis network

voltage vectors, (L) throught, (N L) becomes using the OLS procedure every time the antenna changes, re-
sulting in computational savings and the ability to adjust the
yia(L) y21(2L) ... yni(NL) r RBF network in near real time.
y= y1.2(L) y22(2L) ... yno2(NL) =Gw (12) 3) Least mean squares (LMS) and Pseudoinverse Algo-

rithms: Since the linear combiner in the RBF network may

wherey; 1 (5L) andy, 2(jL) are the RBF network’s responsede thought (_)f as a Ii_near_ adaptive filter, t_he LMS algori_thm
(estimates ofEL and XEL) to the jth averaged input vector may be applied to adjust its weights and bias term. The linear

t.(jL) defined in (7) forj = 1,2,3,.... combiner calculates

For acquisition purposes, dual output networks &brand N
XEL) as described above were designed and tested. For the y(n) = cpias(n) —i—Zwi(n)G(x(n);ci). (13)
fine tracking case, it was found that best performance could i=1

be achieved, with low complexity, using two single-outpqudates of the weights are given by
networks (one foEL and one foXEL).

Differences in the antenna’s distortion at different antenna wi(n + 1) = wi(n) + ne(n)G(x(n); c;) (14)
elevations led to the training of separate RBF networks forh _ is th f d bet h
gross elevations of 15, 45, and°ZFhe selection of radial basis /Nerec(n) = d(n) — y(n) is the error formed between the

widths was guided by distances among the voltage vect sir(_ed outputi(n) and the qctual outpui(). Heren Is the
in the training set and by experimentation. Since differe arning rate parameter, which can be adaptively updated for

networks were used foXEL and for EL in the fine tracking faster convergence [9]. The bias term is viewed as a weight at-

case, a total of six networks were designed and evaluated tf?)?hed to a fixed input ot1 and updated via
tracking. For thg coarse acquisition case, offset estimates were Chias (M + 1) = Cpias(n) + ne(n). (15)
obtained by a single network at each elevation.

The number of basis units varies depending on the complexitéhile the LMS algorithm is a powerful procedure, it is a sto-
of the function being approximated and may be quite large @hastic approximation to true gradient descent. It is possible to
certain cases. In our case, the number of basis units was deg@mpute the set of linear coefficients for a given training set and
mined by the computationally efficient orthogonal least squaréixed radial basis layer which yields the lowest possible mean
(OLS) algorithm described in [8]. This algorithm uses trainingquare error (MSE) [7], [10] as follows.
data points as radial basis function centers, and the weights ar&he matrixG defined by (10) has a pseudoinverse given by
obtained as the solution to a least-squares fitting problem. Al- T\ 1~ T
thoughiitis possible to use larger radial basis spreads cover Gr=(c'a)ah (16)
a wider area in voltage space, the function defined in (8) be-The set of linear combining weights that minimizes the MSE
comes increasingly complex as we move away from the origiver the training data is
or “on-source” direction (0,0) in antenna offset space. This rise
in complexity in turn makes it difficult to generate good approx- Wiew = GTd (17)
imations tpf(fa) .WithOUt using a large number of units, even.ifwhered is the set of desired outputs at times one throgh
larger radial basis spreads are used. It was found by experi- fined by
mentation that six to 15 basis units were required with spreades
(05) of 0.625 to 0.750 over an elevation range of 15 t8. For d = [d(1),d(2),---,d(N)]". (18)
acquisition over the same elevation range, the numbers increase
to 77 to 127 basis units, with spreads ranging from 0.50 to 2.50.Equation (17) always computes the best possible set of weight

2) Adaptation: In the real world, antenna aging, thermatipdates with respectto the mean-squared error criterion over the
gradients, and other factors lead to changes in the ante$640f training vectors.
structure that change the mapping from the 12-dimensional .
voltage space to the two-dimension&lEL, EL) space. This B Quadratic Interpolated Least Squares
makes it necessary to continually and incrementally adapt theA second approach for approximating the mapping described
RBF network mapping to these changes as new data becamg3) involves the use of the quadratic interpolated least squares
available. algorithm.

Gradient descent-based learning can be used to adapt all d€onsider two vector spaces: a 12-dimensional voltage space
the parameters of an RBF network including the radial basisd a two-dimensionaXEL, EL) space. An initial estimate of
spreads and the radial basis centers themselves. While this pie-antenna pointing offset is obtained by finding the voltage
cedure can adjust all of the network’s parameters over timector in the training (reference) set closest to the observed
(except for the number of basis units, which remains fixed), vbltage vector. The corresponding vector XE(, EL) space
does not always converge. By contrast, fdixad radial basis represents our initial estimate of the pointing offset: let us call
layer, it is possible to achieve a global minimum of the meait-( X ELiyitial, ELinitial)-
squared error as a function of the linear combiner weights, and\Next, the eight closest points {&X EL;,itia1, FLinitia1) in the
good retraining performance is significantly easier to achievieaining set are selected. Using the resulting nine points, one
We take this approach here, and describe two algorithms whicdn use one of two methods to obtain the pointing estimates
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(XELest, FLest). The first method uses all eight points and
computes a best fit quadratic surface. The coordinaXés.(
EL) where the minimum of this surface occurs, are taken t
be the best estimates of the pointing offset. However, it wa
found that this method offers only a limited advantage over
much simpler quadratic interpolation method, where separa
one-dimensional quadratic “slices” are used X#L and for
EL instead of the more complex two-dimensional surface: thr
simpler method was used in the simulations.

IIl. SIMULATION DESCRIPTION

A. Simulation of the Antenna With Gravitational Distortion
-E

Spacecraft signals received by the seven-channel AFCS we
simulated in two steps. First, a physical optics analysis code we &) a0 -0 O 20 40 8D
used to obtain the electromagnetic field at the focal plane c W [mm
the antenna where the apertures of the feed horns are Iocated
This code used the 70-m antenna surface-distortion data gﬁe
tained from holography measurements during the recent holog-
raphy-cone experiments [3]. The surface distortions were ac-
tually measured at 12.7, 37, and°4&levation and were sub-
sequently interpolated to obtain distortions at other elevation:
The resulting distortions were added to the nominal surface da
to create the final “distorted” reflector surface data. The field a
the feed horns in the focal plane was computed by applying
plane wave incident on the main reflector surface, and by tracin
the fields to the focal plane via the subreflector. E

Next, the computed field data were used to obtain the comr
plex voltages at the horn array, and the field and power ove
the aperture of each individual horn was determined. The di
ference between the power captured by the feed horns and t
total power at the focal plane is an indication of feed array effi-
ciency. In a separate calculation, the fields at the aperture of ea
horn, induced by the application of a unit voltage to the input o
the horn, were calculated using a theoretical waveguide mod B0 —48 -2 R i &
expansion. These fields were subsequently integrated over ea.... ' !
horn in the focal plane in order to calculate the final Comple&(g 4. Normalized received power distribution (dB) on focal plane of 70-m

voltages. reflector. Elevation: 45,
Figs. 3-5 show the normalized received power distribution on

the focal plane of the reflector at 1545°, and 75 elevations,
respectively. The feed apertures of the array are superimpos
on the plots to indicate the power distribution captured by eac
horn. It can be seen that at45vhere the reflector surface is
designed to provide “optimal” performance, most of the energ
is captured by the center horn. On the other hand, atatfsl

75° elevations, where the effects of gravitational distortions ar
significant, considerable energy falls beyond the center horn bl'E
is largely recovered by the ring of array elements. As can b =
seen, the effects of distortions are particularly pronounced ¢ o4
75° elevation angle. Fig. 5 shows that even in the presence of tt
surrounding feed elements some of the energy falls between tl _ag
horns and therefore is not fully recovered. However, simulation
also show that the surrounding ring elements can be rotated tc &t
position that increases the captured signal power by more th:
0.5 dB. Furthermore, an additional 1 dB in efficiency can be -0 -1 -30 o 20 40 &
obtained by optimally repositioning the entire array in the foca

p_Iane, or equwalently rgpointing the antennain the directionthat 5 Normalized received power distribution (dB) on focal plane of 70-m
yields maximum combined SNR. reflector. Elevation: 75,

3. Normalized received power distribution (dB) on focal plane of 70-m
ctor. Elevation: 15.
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TABLE I 0.05 T ‘I‘ T T
TESTREGIONS FORTRACKING PERFORMANCE EVALUATION
Region 1 (0,0) R O ot
Region 2 || Square. £0.50 mdeg in X EL and in EL. - ]
o ’
[ s
Region 3 || Square. +£1.00 mdeg in X E'L and in EL. B ~0.4 L
Region 4 || Square. +1.50 mdeg in X E'L and in EL. 2 "
w
—QABF s u
Region 5 || Square. +2.00 mdeg in X EL and in EL. g
2 ~ XELLS
-0.2 i |--ELLS e
<, --- XELRBF |
B. Tracking Regions / — ELRBF |
. . -0.251 o : : . I
Although the test sets for tracking were defined over
finely spaced grid ranging from2.00 mdeg to+2.00 mdeg in : , . : :
both XEL and EL, it is still useful to evaluate the algorithms’ 10 15 20 30 35 40

25
performance over varying ranges iXEL, EL) space since, SNR (dB-Hz)

for example, one algorithm may vyield better performandég. 6. Acquisition mean errors as a function of SNR for both RBF network
very close to the “on-source” direction (0, 0) while anothed interpolated least squares algorithms atelBvation with 10-s integration.

may yield better performance over a greater range of pointing
offsets. The tracking regions for the simulations are defined
in Table I. Error statistics were generated for each of the five
tracking regions to illustrate possible performance differencés Acquisition Performance Comparison
between the RBF network and the quadratic interpolated leas
squares algorithm.

IV. SIMULATION RESULTS

bne can compute an instantaneous estimate of pointing
offset using a single voltage vector sample. This technique
corresponds to 1-s averaging, assuming the system is updated
at a rate of one sample per second. We can also compute
Both acquisition and tracking performance can be adverselg-s averages in which the input voltage vector is averaged
affected by changes in the antenna structure, in which caseyer a period of 10 s. The 10-s averaging scheme results in
becomes necessary for the radial basis networks to adapt@raged samples which exhibit a factor of ten lower variance
such changes. This is particularly important for fine trackinghan unaveraged 1-s samples. Both techniques were tested for
algorithms since they are responsible for keeping the antengguisition purposes.
pointed accurately on source throughout the track. For radial basis networks, mean errors with 10-s averaging
Changes in the antenna structure were simulated by alteriggre found to be typically less than 0.1 mdeg for SNR above
the mapping from voltage space ®EL, EL) space when gen- 20 dB-Hz, as illustrated by Fig. 6, which is representative of
erating the training sets for the RBF networks. Let the mapesults achieved at other elevations. It should be noted that a
ping from voltage space to offset space be given by (8), and-dB increase in SNR is associated with 10-second integration,
create a distorted mapping by changing tK&L, EL) values resulting in smaller mean errors.
corresponding to the voltage vectors using, for example, the fol-rig. 7 illustrates the error standard deviation of both the RBF
lowing equations: network and the quadratic least-squares algorithm with 10-s in-
tegration. In this figure, the error standard deviations have been

C. Simulating Changes in the Antenna Structure

4 2 ! .
XELyew = 5XELold —3 mdeg (19) averaged over the entire “acquisition range.” The erroKiL
4 9 and the error ifcL were calculated for each of these grid points.
Eljew = EELOM — % mdeg. (20) The root mean square (rms) error in each variablXfhand in

EL) was then computed over the entire acquisition test grid. The

One may think ofX KL, and E'L, as being the correct off- results shown in this figure are representative of those achieved
sets corresponding to given voltage vectors for the antennaatibther elevations. At high SNR the quadratic least squares al-
time #1. Antenna aging and other factors may cause the sag@rithm’s performance does not improve with increasing SNR
voltage vectors to map t&£L,.., andEL,..,, attimets, where as expected, but tends to approach an rms “error floor” of a few
we have assumed andt, are far apart since the idea is to modetenths of a mdeg. This irreducible error appears to be due to de-
long-termchanges. The RBF networks were trained on the otileased accuracy of the interpolation algorithms near the outer
data in an effort to generate a set of distorted mappings. We @aiyges of the acquisition range, where simple approximations to
say that these training data were correct at ttmé the dis- the error surface tend to break down. For medium to high SNR
tant past but changes in the antenna have yielded a new m@peater than 20 dB-Hz), the radial basis network outperforms
ping at timet,. We seek to update the RBF network parametetise least squares algorithm in acquisition mode, whereas in the
so the networks will accurately determine offsets under the néow SNR region from 10 dB-Hz to approximately 15 dB-Hz the
mapping according to the adaptation strategies discussed in Seast squares algorithm yields best performance. These results
tion II-A2. suggest the use of a hybrid system consisting of a least squares
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1.8 T T T T T 151
N : :
Ay N
161 ; 7
. 1k .. » o . » . . .
1.4 \\ """ XEL LS 4 » » - » » f » » .
= A\ N ; : -- ELLS
S12b A\ \ é |-~ xeLreF ] 05 L e
E : v : » . » » L . » »
z 1R r
a \_\ ] )] » *: i . . * » » *
30.8“ > » » " . B . » ®
u‘g—JO.G' 0.5 » - » » » » - » »
» . . » . . - . .
0.4- -1r » . * » * s bk o .
0.2
: : : _1.? L L L i L :
0 L 1 L L L -1.5 -1 -0.5 0 0.5 1 15
10 15 20 25 30 35 40 XEL

SNR (dB-H
¢ z) Fig. 8. RBF Region 3: 15 40 dB-Hz, 10-s integration, Tracking mode.

Fig. 7. Acquisition error standard deviations as a function of SNR for bofRegion 3 is a square region in pointing offset space rangingfitemdeg in
RBF network and interpolated least squares algorithms atefévation with  bothXEL andEL. The light gray clouds are RBF network estimates of the true

10-second integration. pointing offsets, which are given by the dark * symbols.
algorithm for low SNR acquisition, and an RBF network for the 15 ' ' ' ' '
medium to high SNR regions. v
In summary, these simulations have demonstrated that t th S Wl el e 1
RBF network yields better mean error and rms error perfol € wl w cwL oW aw R e e
mance than interpolated least squares in the medium to hii 45 o W A e oA s e s i
SNR range during acquisition. However, under very nois' v e w w w m m e s
conditions in acquisition mode the quadratic interpolated lea
. . o Or [ TR * ¥ i » SRR » 4
squares algorithm yields the lowest rms and mean errors.
i & o . ik, » - o : 3
B. Tracking Performance Comparison -0.5- S e T
Tracking involves estimation and correction of small pointing HR A S A
errors. Tracking algorithms need only be optimized for accurat  -1r o8 e T e e 7
estimation of errors over a small range: our tests were perform

by applying offsets ranging from2.00 mdeg to 2.00 mdeg in 15 i j i i i
both XEL andEL. 15 -1 -0.5 XgL 0.5 1 1.5

As previously discussed, five tracking regions were defln$d 9. RBF Region 3: 75 40 dB-Hz, 10-s integration, Tracking mode.

for evaluation purposes. The first region was really the point (Qeglon 3 is a square region in pointing offset space ranging ttemdeg in
0) in (XEL, EL) space, where the mean error and error standargthXEL andEL. The light gray clouds are RBF network estimates of the true

deviations of the estimates were determined with the simulaf§ting offsets, which are given by the dark™ symbols.

antenna pointing perfectly on source in the presence of noise.

The next region is a square centered at (0, 0), and the remainiing outer horns when there is distortion, providing more infor-

regions are progressively larger squares, as defined in Tablerhation to the RBF network for a better estimate of the applied
1) RBF Network PerformanceFigs. 8 and 9 show the de-offset. However, we also observe a slight bias &t Gbeleva-

sired target points in{EL, EL) space denoted by dark” sym- tion, evidenced by the fact that the clusters of estimates (light

bols and the estimates computed by the RBF networks as liglats) are not centered perfectly on the true offsets (dark “

dots. For each offset, shown as a dak™ 100 independent es- symbols). A summary of RBF network performance in terms of

timates from the RBF network were used to obtain a scatter ptoean error and error standard deviation at 40 dB-Hz SNR, with

of the networks’ estimates of the applied antenna offsets. Thddks integration, is provided in Table .

light dots form clusters near the target points, and the size an®) Least Squares Performanceés scatter plot for the

the center of each cluster gives a rough indication of netwogkiadratic interpolated least squares algorithm’s estimates is

performance. given in Fig. 10. At 78 elevation estimator bias starts to
Each scatter plot was taken at an SNR of 40 dB-Hz withecome significant. The error standard deviation and mean

10-second integration, illustrating performance over region 3asor of the least squares algorithm, averaged over the entire

defined in Table I. It is interesting to observe that performancgid, are shown in Table IlI.

is better at higher elevations, where there is significant antennd8) Performance ComparisonThe least squares algorithm

distortion, than at 15elevation where distortion is less severesvaluated here implicitly assumes a quadratic error surface since

This is attributed to the fact that more signal power is presentiinuses quadratic interpolation. This assumption appears to be
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TABLE I TABLE I
RBF NETWORK TRACKING PERFORMANCE AT 40 dB-Hz QUADRATIC INTERPOLATED LEAST SQUARES TRACKING PERFORMANCE AT
WITH 10-s NTEGRATION 40 dB-Hz WTH 10-s NTEGRATION
Elevation (deg) | Variable | Mean Error (mdeg) | Error Standard Deviation (mdeg) Elevation (deg) | Variable | Mean Error (mdeg) | Error Standard Deviation (mdeg)
15 XEL -0.0005 0.0491 15 XEL 0.0008 0.0437
15 EL 0.0434 0.0350 15 EL 0.0154 0.0330
45 XEL 0.0009 0.0696 45 XEL 0.0001 0.0685
45 EL 0.0231 0.0523 45 EL 0.0034 0.0633
75 XEL 0.0052 0.0380 75 XEL 0.0000 0.0819
75 EL 0.0090 0.0258 75 EL 0.0268 0.0422
157 0.02 \ , . , .
1+ ® - . » . - . . .
L) L - M M » » » L
0.5+ L I o R I g s * . —_
: o
s3]
[ 4 L * * » » e - L °©
E /
= r - - * ” * » » * . :: /
w 0 §-0.03f , : 1
. . . . . . . » » ch J— )/ LS 1-sec
g -0.04+ ; T == LS 10-sec b
-0.51 LA SR P AN AR IR A R SRR ¢ s ) - - RBF 1-sec
- » » P ' . . » . -0.05f ) — RBF 10-sec b
/
-1F - - L * » » 7 3 L ) [ ] B -0.06 // 1
4
-0.07t/ ]
35 = 205 0 05 1 15 ~-0.08 ' ' ‘ ' '
' ' XEL ' : 10 15 20 25 30 35 40
SNR (dB-Hz2)

Fig.10. LSRegion 3: 75 40 dB-Hz, 10-s integration, Tracking mode. Region_. . . N
3is a square region in pointing offset space ranging evemdeg in bothiKEL Fig.11. Tracking mean errodEL45°. We see that the mean estimation error

andEL. The light gray clouds are RBF network estimates of the true pointirl§ tYPically less than 0.1 mdeg even under noisy conditions. This suggests that
offsets, which are given by the dark= symbols. typical systematic errors in estimation of pointing offsets are fairly small.

good at both 15 and 4%levation where performance is nearly 25 ? ' LS 1-sec
identical to that of the RBF networks. Lo f o e Iﬁ|83|1=01_sec
At 75° elevation, the antenna surface suffers significant dis | R el _—_PRBF T |

tortion. The spatial distribution of power in the focal plane is
affected by these distortions, and a significant amount of powe 5
appears in the outer horns. Furthermore, the assumption of 45
guadratic error surface only appears to hold for a very sma% '
neighborhood in this region, with a breakdown of the quadrati(_%
assumption becoming evident as we move away from (0, 0) i ® 4
antenna offset space as shown in Fig. 10.

The RBF network is better able to deal with severe antenn
distortion as illustrated in Fig. 9 at 7®levation. Under the high 0.5
SNR conditions shown in Figs. 9 and 10, the clusters are ver
small for both algorithms at P=levation. The errors in the least

Erro

squares algorithm at this elevation are mostgtematiavith % 15 20 25 30 35 40
very little random error, indicating breakdown of the quadratic SNR (dB-Hz)
surface assumption at high elevations when the antenna’s nign 12. Tracking error standard deviatioX&L 45°. The error standard

reflector is severely distorted. deviation is_ p_Iotted as a function of SNR in (d_B—Hz). Errors_ i_n estimating_
. . - . ntenna pointing are seen to be largely random with only a negligible systematic
Figs. 11 and 12, which highlight performance over region é@mponent which was illustrated in Fig. 11. We see that the RBF network’s

defined over:1.00 mdeg in antenna offset space, are represepsrformance is very similar to that of the interpolated least squares algorithm
tative of results achieved for all five regions. Fig. 11 shows ti§ed for comparison.

mean errors obtained with both the interpolated least squares

and RBF network algorithms. Both 1-s and 10-s integratiare illustrated in Fig. 12. In all cases, errors in mdeg are plotted
times are included in the error plots. Error standard deviatioagainst SNR in dB-Hz.
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Fig. 13. Performance of RBF network trained on old data at The black Fig.14. Performance of RBF network adapted with the LMS algorithmat 75
“x" symbols denote the true pointing offsets, while the gray patches dendthe RBF network has been successfully adapted to the new data. Small errors of
multiple RBF network estimates. Training the RBF network on old data resubifraction of a mdeg remain, as evidenced by the fact that the gray clouds of RBF
in significant systematic pointing errors which must be corrected by retrainingpinting estimates differ somewhat from the actual pointing estimates given by
the black “x” symbols. However, this is a very significant improvement over
the performance prior to adaptation illustrated in Fig. 13, and these errors still

RBF networks generally exhibit higher mean errors at lol¢ well within the DSN's 0.8 mdeg accuracy requirement.
SNR than the least squares algorithm. At medium-to-high SNR
the RBF network’s performance does not differ significantly ir
terms of mean error. Furthermore, the error standard deviatio

are comparable, indicating the RBF network comes close to ti s Wit W e e
performance of the quadratic interpolated least squares alc R T S
rithm. For 75 of elevation, the RBF network exhibits an ad- 51 P S S SO PR A
vantage in terms of overall performance, mostly due to its abilit T A S
to better handle nonquadratic error surfaces which are char:

teristic of severely distorted antennas. Overall, both algorithm®  °f O e
exhibit similar performance for tracking at elevations of 15 an R B . L
45°, while the RBF network performs better than the quadrati -0.5r LN N N N R BNE SR R
interpolated least squares algorithm at very high elevations cc Yooow W e e G W e o

responding to severe antenna distortion. 1
We observe that both algorithms achieve the nomine

0.8 mdeg total pointing accuracy requirement at SNR abo\

approximately 20 dB-Hz at all elevations when 10-s integratio ~':35 -1 —05 0 0.5 1 15

is used. This integration time is compatible with the practica. XEL

update rate of the antenna. and represents Outstandlng “Wélak15 Performance of RBF network adapted with the pseudoinverse method
h " ' . . . at 75. Since the pseudo-inverse method will calculate the best possible linear

signal pe_rformance. Above 30 dB-Hz, _Wlth 1-s mtegratlor_bombiner weights given the new data set and given a fixed radial basis layer,

both algorithms meet the 0.8 mdeg requirement correspondigsee that this network performs very well. The clusters of RBF pointing

to 0.1 dB SNR loss, aIthough pointing corrections genera| timates are centered very well on the blask ‘symbols denoting actual

. . ointing offsets, illustrating the excellent performance of the pseudo-inverse
cannot be applied to the antenna at such a high rate. methogm adapting the A network. P P

C. Adaptive Tracking Results of the networks trained on old data representing, for example,
As discussed in Section IlI-C, a simple affine transform waes pointing bias and scaling due to aging. Our objective is to re-
used to simulate a changed antenna and to determine the petfain the networks to remove the pointing bias by adapting their
mance of the radial basis network on translational, shrink, aflidear combiners.
stretch distortions. Six RBF networks were trained on voltage-to-1) Adaptation ResultsUsing an updated set of training
offset mappings representing the antenna in the “old” state. Tth&ta, the RBF networks were retrained using the LMS algorithm.
affine transform was used to change the voltage-to-offset mapie resulting networks, with 10-s integration and an SNR of 40
ping, and the RBF networks were simulated on the “new” adB-Hz, yield the performance illustrated in Fig. 14, which is
tenna state both before and after undergoing retraining. representative of results achieved at other elevations. Most of
In Fig. 13 (40 dB-Hz and 10-s integration times) we see thtte systematic pointing bias has been successfully removed.
the estimates (light clusters) corresponding to the antenna off-The pseudoinverse method yields superior training perfor-
sets from the RBF networks are very far from the datk Sym- mance, as shown in Fig. 15, with most of the error caused by
bols denoting the new values. This illustrates the performanite old training set well corrected after retraining is complete.
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TABLE IV 12 T , T . vy
rms ERRORSOBTAINED WHILE TRACKING THE CASSINI SPACECRAFT. : — EL
NO LINEAR TREND SUBTRACTED 1OF el L YEL R
: ’ - - ELlin
Dayof | SNR | Elevation | (A)scend/ | RBF/LS | oxgL | OBL | Ototal 8t : . R | e >E<EL Dloly
- poly
the year | (dB) (deg) (D)escend (mdeg) | (mdeg) | (mdeg) sk
68 444 | 62.7t059.2 D RBF | 0.2274 | 0.7778 | 0.8104 ?
T 4}
195 452 | 39.5t041.6 A RBF 0.2454 | 0.2280 | 0.3349 %
T ol
107 50.1 | 41.1t039.2 D LS 0.4220 | 0.5167 | 0.6671 2 2
(e}
0_,.
TABLE V
rms ERRORSOBTAINED WHILE TRACKING THE CASSINI SPACECRAFT. -2
LINEAR TREND SUBTRACTED
—4}
Day of | SNR | Elevation | (A)scend/ | RBF/LS | oxEL OEL Ototal ? : : : :
40 145 150 155 160 165
the year | (dB) (deg) (D)escend (mdeg) | (mdeg) | (indeg) Time (minutes)
68 | 444 | 62.71059.2 D RBF ] 0.2226 | 0.2270 | 0.3179  Fjg 16. Day 68 RBF track of Cassini with antenna descending fronr62.9

195 452 | 39510416 A RBE | 0.2226 | 0.2270 | 0.3179 to 59.2 eIevatlor’L Po_mtmg errors were intentionally applied in order to test
the RBF network’s ability to recover quickly and accurately. It can be seen that

107 | 501 |41.110392 D LS 0.3969 | 0.5154 | 0.6505 the RBF network quickly returns antenna pointing to the long-term trend line,

illustrating the system’s ability to keep the antenna pointed accurately on source.

As with the LMS case, the results obtained at @be represen- s T . . ! ' ! !
tative of results obtained at other elevations. The LMS meth : ’ 5
also yields acceptable performance, but LMS is a stochasticg 4s}
dient descent procedure. It is, therefore, only an approximati :
to the true gradient descent algorithm, and even true gradient .| .Y . ]
scent takes many iterations to converge asymptotically to the (;§ : : : : §
timal weight vectonw. By contrast, the pseudo-inverse methof | = oecmmes |
calculates a set of weights which yields the lowest possible M¢§ AN /) : ’
for a fixed radial basis layer [7], [10].
If near real-time updating is desired, it may be advisable %
use the LMS algorithm, although storing and averaging data 2
form new training sets to update the linear combiner weigr®2sf—
using the pseudoinverse method would likely yield better pe

formance. P

Combined

: Central channel

z, 1-s6

30

V. REAL-WORLD ACQUISITION AND TRACKING 15 ' 1 L i
145 146 147 148 149 150 151 152 153

Data collected during observations of the Cassini spacecrai Time (mindes)
in 2001 were used to evaluate RBF networks and interpolateid. 17. One of the day 68 RBF tracks of Cassini with antenna descending
least squares algorithms on the 70-meter antenna at GdLﬂm. 62.9 t0 59.2 elevation. The RBF network is clearly able to recover from

. . . L. .the intentionally applied pointing error, allowing a rapid return to peak SNR
stone, CA. Since antenna dish deformation is highly elevatigeration. The objective here is to show that SNR pointing losses are effectively
dependent, data were gathered and tracking operations weirémized by the use of the RBF network for pointing control.
performed at elevations ranging fromi,@8he antenna'’s lower
limit, up to 75, the highest elevation achieved while trackingvhich takes into account both earth rotation and relative motion
Cassini. of the spacecraft.

While tracking the Ka-band carrier, the antenna pointing was Following this fine-pointing operation, a raster-scan was ini-
refined by means of a “five-point boresighting” algorithm thatiated. The antenna was commanded to various predetermined
introduced+4 mdeg pointing offsets in two orthogonal direc-offsets from the nominal on-source direction, and the received
tions along the line-of-sight. The algorithm then measured tlrector measured at each point. The data were taken at offsets
signal power in the central horn (channel 1) at each offset @s1ging from—3.00 to +3.00 mdegs with regular spacing of
well as with no offset (nominal on-source direction) and con.00 mdeg in botiXXEL andEL directions. Note that the zero-
puted a pointing update based on a quadratic fit to the data. Aftdfset case defines the effect of antenna distortions on the re-
a few iterations, the magnitude of the updates approached ze&eiyed complex signals at that elevation, whereas the other cases
and the signal power in the central channel was maximized: tleigntain a mixture of both distortion and pointing effects. Only
was considered to be the true “on-source” direction. The antertha response of the six outer horns were used to train the net-
was allowed to track the source using its own tracking modelork, as explained in Section II.
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Fig. 18. Day 195 RBF track of Cassini with antenna ascending from 39f%0. 20. Day 107 LS track of Cassini with antenna descending from 25.3 to
to 41.6 elevation. This illustrates the RBF network’s steady-state trackirdg-8" elevation. The interpolated least squares algorithm also does an efficient
ability. The antenna ran under RBF network control for over 10 min, and tii@P of correcting intentionally applied pointing errors, keeping the antenna

algorithm continued to accurately track the long-term trend in the on-sour@ginted accurately on-source. Here we see that the intentionally applied offsets
pointing direction very well. were corrected very rapidly, allowing a quick return to the on-source direction.
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Fig. 19. Day 195 RBF track of Cassini with antenna ascending from 39.5 kig. 21. Expanded version of track #3 of Fig. 20. Aday 107 LS track of Cassini

41.6°s elevation. The RBF network effectively prevented pointing related SNith antenna descending from 25.3 to 22@evation. SNR recovery is very

losses for a period of over 10 min of steady-state tracking. The stable SNR attéapid with the interpolated least squares algorithm, which does an excellent job

to the overall stability of the algorithm during long tracking periods. of correcting pointing-related SNR loss. Here we see the changes in SNR from
the time we deliberately apply a pointing error until the algorithm corrects the
antenna’s pointing, returning SNR to its peak value.

A. Performance Evaluation: Tracking the Cassini Spacecraft

Cassini tracking operations carried out in 2001 provide a pief fine tracking algorithms. For that reason, it is typical for the
ture of RBF and interpolated least squares capabilities. Thegcecraft's position inXEL, EL) coordinate space to drift
operations were carried out in real-time with the algorithms costowly with respect to the pointing predicts. Any analysis of
trolling the pointing of the 70-m antenna. rms tracking errors must, therefore, involve subtraction of this

The physical antenna suffers from several possible souregsw drift from the pointing data. We report here in Tables IV
of pointing error which are not modeled in our simulationsand V both sample (uncorrected) rms errors, and rms errors
including small-scale vibrations of the mechanical structur@ith the long-term linear trend removed, for a number of tracks.
However, real-world testing still tends to yield rms pointing On “day 68,” that is, 68 days from the beginning of the year
errors well under 0.8 mdeg, particularly at high SNR. Th2001, a 1-s integration scheme was used. In this case, five RBF
antenna’s gross pointing is controlled by a computerizetktwork outputs were averaged in order to calculate each up-
model which uses “pointing predicts” to determine where thgate. Additionally, a delay of several seconds was included to
spacecraft should be in the sky. These pointing predicts oftparmit the antenna sufficient settling time after each position up-
have errors in excess of 10 mdeg, necessitating the developnuate command was sent. Consequently, pointing updates were
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Fig. 22. Measured rms errors XEL andEL versus simulation errors. The measurements were carried out at the DSS-14 station, while tracking the Ka-band
downlink from the Cassini spacecraft.

issued every 15 s. Figs. 16 and 17 illustrate the RBF network’sA summary of measured error standard deviations is pre-
ability to recover from intentionally applied pointing errors irsented in Fig. 22. This figure shows simulated rms errors over
both XEL andEL. These tracks, which covered antenna elevgegion 1 as defined in Table I, which is just the origin (0, 0)
tions ranging from 62:9down to 59.2 with the antenna de- in (XEL, EL) space. Previous figures focused on region 3. We
scending, have very short steady-state portions since the dte that the simulation curves provide a lower bound for the
phasis was on verifying the ability of the RBF network to dealctual error standard deviations. Since the simulations do not
with relatively large errors that may arise in the course of rowodel others causes of error, such as small amplitude vibrations
tine tr_a<_:l_<ing. This is, in effect, an evaluation of the network'g e to imperfections in the gears, and buffeting by light wind,
“acquisition” performance. The RBF network was able t0 COgtc | it is expected that real-world rms errors will be somewhat
rect intentionally applied pointing offsets, quickly pointing the,igher than those obtained in simulation. However, we note that
antennatoward its nominal “on-_sour_ce”dlrectlon. InFig. 17, Wease errors lie well within the DSN pointing requirement of
see an example of the sharp climb in SNR that results from (¢ ,qeq. Similar results were obtained for the interpolated least
po'”t'ﬁ‘,g correct!’on a_pphed by the RBF network. squares algorithm. We also point out that the simulated curve for
On “day 195,” a different methodology was used. Inputs téo?gion 1 was generated only for the®4&ase, while these data

the RBF network were the result of 1-s integration, and the net- . . o .
were taken at elevations ranging from"3@ 61°, so some dis-
work outputs were not averaged, but a delay of several seconds ) .

; S crepancies are unavoidable.

was applied, resulting in 6-s updates. No error offsets had been

applied, but the track lasted about ten minutes, allowing obser-

vations of stability to be made. Total rms pointing errors re- VI. CONCLUSION

mained 0.34 mdeg or less throughout, and central and combined .
channel SNR remained stable as shown in Figs. 18 and 19. e have shown that both interpolated least squares and

Interpolated least squares tracks were also perform@daptive RBF networks, working in conjunction with an array

yielding very similar results. Figs. 20 and 21 illustrate thif€d compensation system, can point a 70-m deep space
algorithm’s ability to correct intentionally applied pointing@ntenna with rms errors of 0.1-0.5 mdeg, under a wide range
offsets. As with the day 68 RBF tracks, we see the systephsignal-to-noise-ratios and antenna elevations, achieving sig-
is able to correct intentionally applied pointing errors, thuRificantly higher accuracies than the 0.8-mdeg benchmark for

restoring the antenna to its nominal “on-source” pointingoMmmunications at Ka-band frequencies of 32 GHz. As such

direction. The recovery of lost SNR is readily apparent. they demonstrate clear potential for highly accurate pointing of

should be noted that in space communications the loss of dhe 70-m DSN antennas, which is a challenging problem due to
decibel can significantly increase the cost of a mission, makiagmultitude of time-varying distortions imposed on the antenna

accurate pointing a high priority. structure on a continuous basis.
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Results indicate that RBF networks perform as well &
the quadratic interpolated least squares algorithms at varyi
antenna elevations for tracking and acquisition, and undel
wide range of SNR conditions. At high antenna elevations, tl
quadratic interpolation method deteriorates for any significa
offset from the “on-source” direction, making RBF network:
especially attractive during high elevation operations.
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