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Abstract—The use of radial basis function (RBF) networks
and least squares algorithms for acquisition and fine tracking
of NASA’s 70-m-deep space network antennas is described and
evaluated. We demonstrate that such a network, trained using the
computationally efficient orthogonal least squares algorithm and
working in conjunction with an array feed compensation system,
can point a 70-m-deep space antenna with root mean square
(rms) errors of 0.1–0.5 millidegrees (mdeg) under a wide range
of signal-to-noise ratios and antenna elevations. This pointing
accuracy is significantly better than the 0.8 mdeg benchmark for
communications at Ka-band frequencies (32 GHz). Continuous
adaptation strategies for the RBF network were also implemented
to compensate for antenna aging, thermal gradients, and other
factors leading to time-varying changes in the antenna structure,
resulting in dramatic improvements in system performance. The
systems described here are currently in testing phases at NASA’s
Goldstone Deep Space Network (DSN) and were evaluated using
Ka-band telemetry from the Cassini spacecraft.

Index Terms—Adaptive, antennas, array feed, deep space
network, NASA, neural networks, orthogonal least-squares, radial
basis function (RBF) networks.

I. INTRODUCTION

T HE NASA Deep Space Network (DSN) is an international
network of steerable high-gain reflector antennas, which

supports interplanetary spacecraft missions, radio and radar as-
tronomy observations for the exploration of the solar system,
and select Earth-orbiting missions. The DSN currently consists
of three deep-space communication facilities, placed approx-
imately 120 apart around the world; at Goldstone, in Cali-
fornia’s Mojave Desert; near Madrid, Spain; and near Canberra,
Australia. This strategic placement permits constant observation
of spacecraft as the Earth rotates, and helps make the DSN the
largest and most sensitive radio science and telecommunications
system in the world.

Over the past years, there has been increasing interest in
the use of shorter carrier wavelengths to enhance the DSNs
telecommunications and radio science capabilities. Shorter
carrier wavelengths, or equivalently higher carrier frequencies,
yield greater antenna gains and increased useful bandwidth,
with reduced sensitivity to deep-space plasma effects, that tend
to degrade the quality of the received signal.

However, there are also new problems associated with the
use of higher carrier frequencies, namely greater losses due to
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gravity-induced antenna deformations and wind, greater sen-
sitivity to misalignments of the radio-frequency (RF) compo-
nents, and more stringent pointing requirements—all of which
are further complicated by time-varying distortions imposed on
the antenna structure. Even in the absence of external distur-
bances, such as wind, time- and elevation-dependent loss com-
ponents are introduced by gravity as the antenna tracks the target
(whether it is a spacecraft or a radio-source). The combination
of these factors can lead to unacceptably large pointing errors
and signal-to-noise-ratio (SNR) losses if left uncorrected.

Recovery of SNR losses due to gravitational deformation has
been addressed in [1]–[3]. Here, we consider the problem of
acquiring and tracking spacecraft with sufficient accuracy to
maintain acceptably small pointing losses (nominally 0.1 dB)
on large DSN antennas.

A. Array Feed Compensation System

A recently developed approach for recovering losses due to
gravitational deformations, thermal distortion and wind consists
of a real-time compensation system employing a seven-element
array of feeds in the focal plane of the antenna’s subreflector [1].
The array feed compensation system (AFCS) has been evaluated
at the DSN’s Goldstone complex, and has successfully demon-
strated real-time gravity-compensation and closed-loop tracking
of spacecraft and radio-source signals at Ka-band frequencies
(nominally 32 GHz). Its application to recovering losses due to
mechanical antenna distortions at high frequencies (32 GHz or
higher) is described in [2] and [3].

A conceptual block diagram of the Ka-band AFCS designed
for the DSN’s 70-m antennas is shown in Fig. 1. Its main compo-
nents are an array of seven 22 dBi horns with a separate Ka-band
low-noise amplifier (LNA) connected to each horn; a seven-
channel downconverter assembly that converts the 32 GHz RF
signal to 300 MHz IF (intermediate frequency), followed by a
seven-channel baseband downconverter assembly that generates
14 real (seven complex) baseband signals. A digital signal pro-
cessing assembly then extracts parameters from the digital sam-
ples in real-time to obtain the optimum combining weights and
determine the antenna pointing updates needed to maximize the
combined SNR.

In the absence of antenna distortions, a single properly de-
signed receiving horn collects virtually all of the focused signal
power. Distortions generally lead to a shift in the peak of the
signal distribution, as well as a redistribution of the signal power
in the focal plane. This leads to loss of power in the central
channel, which can be recovered by the outer horns of an array
placed in the focal plane. When the horn signals are multiplied

1045–9227/02$17.00 © 2002 IEEE



1150 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002

Fig. 1. Conceptual block diagram of the array feed compensation system.

by complex combining weights matched to the instantaneous
magnitude and phase of the signal in each channel, the SNR of
the combined channel can be improved, approaching that of an
undistorted antenna under ideal conditions.

Distortions also affect the pointing of the antenna by intro-
ducing shifts in the signal peak. Antenna pointing errors can de-
grade the received SNR of both single horn and array receivers,
particularly at Ka-band or higher frequencies. We shall demon-
strate that properly designed neural network and least-squares
algorithms effectively remove the time-varying pointing errors,
and keep the antenna pointed in the direction of maximum SNR
even in the presence of significant antenna distortions.

B. Signal Modeling

When the antenna is pointed toward a source such as a dis-
tant spacecraft, the “residual carrier” portion of the signal can
be filtered out and used to estimate the desired parameters as
shown in [1]. The signal in the-th channel (out of seven) can
be represented as

(1)

where the real signal and background noise components are de-
fined as

(2)

(3)

where and are uncorrelated baseband random pro-
cesses representing the in-phase and quadrature components of
the noise, and represents the Ka-band (32 GHz) carrier fre-
quency [4]. Both the amplitude and phase of the signal

depend on the distortion of the antenna, and also on the pointing
offset.

Each channel is downconverted to an intermediate frequency
of 300 MHz, after which spacecraftfrequency predicts1 derived
from the known spacecraft trajectory are applied and the signals
are downconverted to baseband. The resulting complex base-
band signals are sampled and “frequency-locked” using a digital
frequency-lock loop which eliminates any remaining frequency
offsets.

The complex samples so obtained remain essentially con-
stant over time-scales of minutes, depending on the antenna dy-
namics, and contain all of the amplitude and phase information
used by the tracking and combining algorithms [3]. During ac-
tual tracking, sampling rates of 128 samples per second are typ-
ical. These samples can be represented as

(4)

where

(5)

with

and (6)

We assume that noise samples from different channels are in-
dependent, as are different noise samples in the same channel,
and the amplitude and phase of the signal are assumed constant
over the sampling intervals. It is convenient to represent the re-
ceived samples as seven-dimensional complex vectors of the
form , where
and where each component is defined as in (5). In order to re-
duce the effects of noise, the training data set was formed by
averaging the received samples over a large number of consec-
utive received vectors

(7)

where is the complex averaged vector at time, with
referring to its th complex component;
, and is the variance of the additive white Gaussian

noise samples. Thus, with , one-second updates are
generated, whereas with the effective integration time
is 10 s. Note that as pointed out above signal amplitudesand
phases are assumed to remain constant over these observa-
tions.

C. Problem Statement

The instantaneous pointing error vector of the antenna can
be represented as (XEL, EL), a two-dimensional error vector,
whereXEL is the incremental pointing error in cross-elevation,

1These are predictions of the received spacecraft carrier frequency during the
tracking period. The relative motion of the spacecraft, along with Earth’s ro-
tation, cause the observed carrier frequency to change as a function of time,
making accurate prediction necessary for acquiring and tracking the signal.
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andEL is the incremental pointing error in elevation measured
in millidegrees (mdeg).

We seek to compute the mapping from the seven-dimensional
averaged voltage vector to the two-dimensional error vector
(XEL, EL), as represented by

XEL

EL
(8)

Residual errors in the voltage vector due to noise cause
errors in the estimate of (XEL, EL) even if is known ex-
actly. However, is also affected by the physical structure
of the antenna, which is not always precisely known and which
changes as the antenna ages or is buffeted by wind. The noisy
and time-varying nature of poses an additional challenge.

Previous work has demonstrated successful application of in-
terpolated least squares and radial basis function (RBF) net-
works to correction of antenna pointing errors, based on data
from the AFCS, and with the aim of achieving maximum com-
bined SNR [5], [6].

Two distinct problems will be considered here: acquisition
and tracking. The acquisition problem involves the estimation of
antenna-pointing offsets over a wide range. For instance, if the
antenna’s pointing has drifted by 4 mdeg inXEL and mdeg
in EL, an acquisition algorithm must be able to estimate the
offset vector accurately in order to repoint the antenna
in the correct direction. Otherwise, a severe loss of signal power
would result due to the 5 mdeg pointing error magnitude on a
70-m antenna, which typically has an 8 mdeg beamwidth at 45
elevation.

The second problem, tracking, focuses on significantly
smaller offsets. After the antenna has been correctly pointed
on source by the acquisition algorithm, it remains necessary to
keep it pointed on source to within one mdeg total pointing error
despite slow drift in antenna pointing. Accordingly, the tracking
algorithm must estimate small pointing errors near the center of
the (XEL, EL) space accurately, and correct them in real time.

II. TECHNICAL APPROACH

Two approaches, one involving a radial basis function net-
work and the other a quadratic interpolated least squares al-
gorithm, were developed to synthesize the function de-
scribed by (8). Descriptions of both are given below, followed by
results and analysis from extensive experiments on real-world
and simulated data.

A. Radial Basis Function Networks

1) Description: A RBF network was developed and used to
estimate antenna pointing errors [7], [8]. The complex voltage
of the center horn was always normalized to , making it

Fig. 2. RBF neural network diagram showing the input layer, the hidden
(radial basis) layer, and the output layer (linear combiner) along with the bias
term.

unnecessary to provide this input to the network. This normal-
ization eliminates some of the possible time-dependent varia-
tions in the received signal, at the cost of a slight reduction in
the total information presented to the algorithms. The network’s
inputs, therefore, consist of the real and imaginary components
of the six normalized horn voltages from the outer horns, for an
input vector dimension of 12 as shown in Fig. 2. The network
was trained to generate values for the incrementalEL andXEL
offsets corresponding to these inputs.

Each of the radial basis units implements a Gaussian func-
tion of the form

(9)

where is the 12-element averaged input voltage vector at
time [see (7)], denotes theth radial basis center, and

controls the width of the unit’s region of response.
The scalar is defined so that when

.
Defining the matrix of hidden layer responses, in Fig. 2, to

consecutive input vectors as shown in (10) at the bottom of the
page and defining the linear combiner weight matrix as

(11)

...
...

.. .
...

...
(10)
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the output of the radial basis network in response to theinput
voltage vectors through becomes

(12)

where and are the RBF network’s responses
(estimates ofEL and XEL) to the th averaged input vector

defined in (7) for .
For acquisition purposes, dual output networks (forEL and

XEL) as described above were designed and tested. For the
fine tracking case, it was found that best performance could
be achieved, with low complexity, using two single-output
networks (one forEL and one forXEL).

Differences in the antenna’s distortion at different antenna
elevations led to the training of separate RBF networks for
gross elevations of 15, 45, and 75. The selection of radial basis
widths was guided by distances among the voltage vectors
in the training set and by experimentation. Since different
networks were used forXEL and for EL in the fine tracking
case, a total of six networks were designed and evaluated for
tracking. For the coarse acquisition case, offset estimates were
obtained by a single network at each elevation.

The number of basis units varies depending on the complexity
of the function being approximated and may be quite large in
certain cases. In our case, the number of basis units was deter-
mined by the computationally efficient orthogonal least squares
(OLS) algorithm described in [8]. This algorithm uses training
data points as radial basis function centers, and the weights are
obtained as the solution to a least-squares fitting problem. Al-
though it is possible to use larger radial basis spreadsto cover
a wider area in voltage space, the function defined in (8) be-
comes increasingly complex as we move away from the origin,
or “on-source” direction (0,0) in antenna offset space. This rise
in complexity in turn makes it difficult to generate good approx-
imations to without using a large number of units, even if
larger radial basis spreads are used. It was found by experi-
mentation that six to 15 basis units were required with spreads
( ) of 0.625 to 0.750 over an elevation range of 15 to 75. For
acquisition over the same elevation range, the numbers increase
to 77 to 127 basis units, with spreads ranging from 0.50 to 2.50.

2) Adaptation: In the real world, antenna aging, thermal
gradients, and other factors lead to changes in the antenna
structure that change the mapping from the 12-dimensional
voltage space to the two-dimensional (XEL, EL) space. This
makes it necessary to continually and incrementally adapt the
RBF network mapping to these changes as new data become
available.

Gradient descent-based learning can be used to adapt all of
the parameters of an RBF network including the radial basis
spreads and the radial basis centers themselves. While this pro-
cedure can adjust all of the network’s parameters over time
(except for the number of basis units, which remains fixed), it
does not always converge. By contrast, for afixed radial basis
layer, it is possible to achieve a global minimum of the mean-
squared error as a function of the linear combiner weights, and
good retraining performance is significantly easier to achieve.
We take this approach here, and describe two algorithms which

avoid the need to generate an entirely new radial basis network
using the OLS procedure every time the antenna changes, re-
sulting in computational savings and the ability to adjust the
RBF network in near real time.

3) Least mean squares (LMS) and Pseudoinverse Algo-
rithms: Since the linear combiner in the RBF network may
be thought of as a linear adaptive filter, the LMS algorithm
may be applied to adjust its weights and bias term. The linear
combiner calculates

(13)

Updates of the weights are given by

(14)

where is the error formed between the
desired output and the actual output . Here is the
learning rate parameter, which can be adaptively updated for
faster convergence [9]. The bias term is viewed as a weight at-
tached to a fixed input of and updated via

(15)

While the LMS algorithm is a powerful procedure, it is a sto-
chastic approximation to true gradient descent. It is possible to
compute the set of linear coefficients for a given training set and
fixed radial basis layer which yields the lowest possible mean
square error (MSE) [7], [10] as follows.

The matrix defined by (10) has a pseudoinverse given by

(16)

The set of linear combining weights that minimizes the MSE
over the training data is

(17)

where is the set of desired outputs at times one through
defined by

(18)

Equation (17) always computes the best possible set of weight
updates with respect to the mean-squared error criterion over the
set of training vectors.

B. Quadratic Interpolated Least Squares

A second approach for approximating the mapping described
in (8) involves the use of the quadratic interpolated least squares
algorithm.

Consider two vector spaces: a 12-dimensional voltage space
and a two-dimensional (XEL, EL) space. An initial estimate of
the antenna pointing offset is obtained by finding the voltage
vector in the training (reference) set closest to the observed
voltage vector. The corresponding vector in (XEL, EL) space
represents our initial estimate of the pointing offset: let us call
it XEL EL .

Next, the eight closest points toXEL EL in the
training set are selected. Using the resulting nine points, one
can use one of two methods to obtain the pointing estimates
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XEL EL . The first method uses all eight points and
computes a best fit quadratic surface. The coordinates (XEL,
EL) where the minimum of this surface occurs, are taken to
be the best estimates of the pointing offset. However, it was
found that this method offers only a limited advantage over a
much simpler quadratic interpolation method, where separate
one-dimensional quadratic “slices” are used forXEL and for
EL instead of the more complex two-dimensional surface: this
simpler method was used in the simulations.

III. SIMULATION DESCRIPTION

A. Simulation of the Antenna With Gravitational Distortion

Spacecraft signals received by the seven-channel AFCS were
simulated in two steps. First, a physical optics analysis code was
used to obtain the electromagnetic field at the focal plane of
the antenna where the apertures of the feed horns are located.
This code used the 70-m antenna surface-distortion data ob-
tained from holography measurements during the recent holog-
raphy-cone experiments [3]. The surface distortions were ac-
tually measured at 12.7, 37, and 47elevation and were sub-
sequently interpolated to obtain distortions at other elevations.
The resulting distortions were added to the nominal surface data
to create the final “distorted” reflector surface data. The field at
the feed horns in the focal plane was computed by applying a
plane wave incident on the main reflector surface, and by tracing
the fields to the focal plane via the subreflector.

Next, the computed field data were used to obtain the com-
plex voltages at the horn array, and the field and power over
the aperture of each individual horn was determined. The dif-
ference between the power captured by the feed horns and the
total power at the focal plane is an indication of feed array effi-
ciency. In a separate calculation, the fields at the aperture of each
horn, induced by the application of a unit voltage to the input of
the horn, were calculated using a theoretical waveguide modal
expansion. These fields were subsequently integrated over each
horn in the focal plane in order to calculate the final complex
voltages.

Figs. 3–5 show the normalized received power distribution on
the focal plane of the reflector at 15, 45 , and 75 elevations,
respectively. The feed apertures of the array are superimposed
on the plots to indicate the power distribution captured by each
horn. It can be seen that at 45, where the reflector surface is
designed to provide “optimal” performance, most of the energy
is captured by the center horn. On the other hand, at 15and
75 elevations, where the effects of gravitational distortions are
significant, considerable energy falls beyond the center horn but
is largely recovered by the ring of array elements. As can be
seen, the effects of distortions are particularly pronounced at
75 elevation angle. Fig. 5 shows that even in the presence of the
surrounding feed elements some of the energy falls between the
horns and therefore is not fully recovered. However, simulations
also show that the surrounding ring elements can be rotated to a
position that increases the captured signal power by more than
0.5 dB. Furthermore, an additional 1 dB in efficiency can be
obtained by optimally repositioning the entire array in the focal
plane, or equivalently repointing the antenna in the direction that
yields maximum combined SNR.

Fig. 3. Normalized received power distribution (dB) on focal plane of 70-m
reflector. Elevation: 15.

Fig. 4. Normalized received power distribution (dB) on focal plane of 70-m
reflector. Elevation: 45.

Fig. 5. Normalized received power distribution (dB) on focal plane of 70-m
reflector. Elevation: 75.
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TABLE I
TEST REGIONS FORTRACKING PERFORMANCEEVALUATION

B. Tracking Regions

Although the test sets for tracking were defined over a
finely spaced grid ranging from mdeg to mdeg in
both XEL andEL, it is still useful to evaluate the algorithms’
performance over varying ranges in (XEL, EL) space since,
for example, one algorithm may yield better performance
very close to the “on-source” direction (0, 0) while another
may yield better performance over a greater range of pointing
offsets. The tracking regions for the simulations are defined
in Table I. Error statistics were generated for each of the five
tracking regions to illustrate possible performance differences
between the RBF network and the quadratic interpolated least
squares algorithm.

C. Simulating Changes in the Antenna Structure

Both acquisition and tracking performance can be adversely
affected by changes in the antenna structure, in which case it
becomes necessary for the radial basis networks to adapt to
such changes. This is particularly important for fine tracking
algorithms since they are responsible for keeping the antenna
pointed accurately on source throughout the track.

Changes in the antenna structure were simulated by altering
the mapping from voltage space to (XEL, EL) space when gen-
erating the training sets for the RBF networks. Let the map-
ping from voltage space to offset space be given by (8), and
create a distorted mapping by changing the (XEL, EL) values
corresponding to the voltage vectors using, for example, the fol-
lowing equations:

XEL XEL mdeg (19)

EL mdeg (20)

One may think ofXEL andEL as being the correct off-
sets corresponding to given voltage vectors for the antenna at
time . Antenna aging and other factors may cause the same
voltage vectors to map toXEL andEL at time , where
we have assumed and are far apart since the idea is to model
long-termchanges. The RBF networks were trained on the old
data in an effort to generate a set of distorted mappings. We can
say that these training data were correct at timein the dis-
tant past but changes in the antenna have yielded a new map-
ping at time . We seek to update the RBF network parameters
so the networks will accurately determine offsets under the new
mapping according to the adaptation strategies discussed in Sec-
tion II-A2.

Fig. 6. Acquisition mean errors as a function of SNR for both RBF network
and interpolated least squares algorithms at 45elevation with 10-s integration.

IV. SIMULATION RESULTS

A. Acquisition Performance Comparison

One can compute an instantaneous estimate of pointing
offset using a single voltage vector sample. This technique
corresponds to 1-s averaging, assuming the system is updated
at a rate of one sample per second. We can also compute
10-s averages in which the input voltage vector is averaged
over a period of 10 s. The 10-s averaging scheme results in
averaged samples which exhibit a factor of ten lower variance
than unaveraged 1-s samples. Both techniques were tested for
acquisition purposes.

For radial basis networks, mean errors with 10-s averaging
were found to be typically less than 0.1 mdeg for SNR above
20 dB-Hz, as illustrated by Fig. 6, which is representative of
results achieved at other elevations. It should be noted that a
10-dB increase in SNR is associated with 10-second integration,
resulting in smaller mean errors.

Fig. 7 illustrates the error standard deviation of both the RBF
network and the quadratic least-squares algorithm with 10-s in-
tegration. In this figure, the error standard deviations have been
averaged over the entire “acquisition range.” The error inXEL
and the error inEL were calculated for each of these grid points.
The root mean square (rms) error in each variable (inXELand in
EL) was then computed over the entire acquisition test grid. The
results shown in this figure are representative of those achieved
at other elevations. At high SNR the quadratic least squares al-
gorithm’s performance does not improve with increasing SNR
as expected, but tends to approach an rms “error floor” of a few
tenths of a mdeg. This irreducible error appears to be due to de-
creased accuracy of the interpolation algorithms near the outer
edges of the acquisition range, where simple approximations to
the error surface tend to break down. For medium to high SNR
(greater than 20 dB-Hz), the radial basis network outperforms
the least squares algorithm in acquisition mode, whereas in the
low SNR region from 10 dB-Hz to approximately 15 dB-Hz the
least squares algorithm yields best performance. These results
suggest the use of a hybrid system consisting of a least squares
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Fig. 7. Acquisition error standard deviations as a function of SNR for both
RBF network and interpolated least squares algorithms at 45elevation with
10-second integration.

algorithm for low SNR acquisition, and an RBF network for the
medium to high SNR regions.

In summary, these simulations have demonstrated that the
RBF network yields better mean error and rms error perfor-
mance than interpolated least squares in the medium to high
SNR range during acquisition. However, under very noisy
conditions in acquisition mode the quadratic interpolated least
squares algorithm yields the lowest rms and mean errors.

B. Tracking Performance Comparison

Tracking involves estimation and correction of small pointing
errors. Tracking algorithms need only be optimized for accurate
estimation of errors over a small range: our tests were performed
by applying offsets ranging from 2.00 mdeg to 2.00 mdeg in
bothXEL andEL.

As previously discussed, five tracking regions were defined
for evaluation purposes. The first region was really the point (0,
0) in (XEL, EL) space, where the mean error and error standard
deviations of the estimates were determined with the simulated
antenna pointing perfectly on source in the presence of noise.
The next region is a square centered at (0, 0), and the remaining
regions are progressively larger squares, as defined in Table I.

1) RBF Network Performance:Figs. 8 and 9 show the de-
sired target points in (XEL, EL) space denoted by dark “” sym-
bols and the estimates computed by the RBF networks as light
dots. For each offset, shown as a dark “,” 100 independent es-
timates from the RBF network were used to obtain a scatter plot
of the networks’ estimates of the applied antenna offsets. These
light dots form clusters near the target points, and the size and
the center of each cluster gives a rough indication of network
performance.

Each scatter plot was taken at an SNR of 40 dB-Hz with
10-second integration, illustrating performance over region 3 as
defined in Table I. It is interesting to observe that performance
is better at higher elevations, where there is significant antenna
distortion, than at 15elevation where distortion is less severe.
This is attributed to the fact that more signal power is present in

Fig. 8. RBF Region 3: 15, 40 dB-Hz, 10-s integration, Tracking mode.
Region 3 is a square region in pointing offset space ranging over�1 mdeg in
bothXEL andEL. The light gray clouds are RBF network estimates of the true
pointing offsets, which are given by the dark “�” symbols.

Fig. 9. RBF Region 3: 75, 40 dB-Hz, 10-s integration, Tracking mode.
Region 3 is a square region in pointing offset space ranging over�1 mdeg in
bothXEL andEL. The light gray clouds are RBF network estimates of the true
pointing offsets, which are given by the dark “�” symbols.

the outer horns when there is distortion, providing more infor-
mation to the RBF network for a better estimate of the applied
offset. However, we also observe a slight bias at 75of eleva-
tion, evidenced by the fact that the clusters of estimates (light
dots) are not centered perfectly on the true offsets (dark “”
symbols). A summary of RBF network performance in terms of
mean error and error standard deviation at 40 dB-Hz SNR, with
10-s integration, is provided in Table II.

2) Least Squares Performance:A scatter plot for the
quadratic interpolated least squares algorithm’s estimates is
given in Fig. 10. At 75 elevation estimator bias starts to
become significant. The error standard deviation and mean
error of the least squares algorithm, averaged over the entire
grid, are shown in Table III.

3) Performance Comparison:The least squares algorithm
evaluated here implicitly assumes a quadratic error surface since
it uses quadratic interpolation. This assumption appears to be
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TABLE II
RBF NETWORK TRACKING PERFORMANCE AT 40 dB-Hz

WITH 10-s INTEGRATION

Fig. 10. LS Region 3: 75, 40 dB-Hz, 10-s integration, Tracking mode. Region
3 is a square region in pointing offset space ranging over�1 mdeg in bothXEL
andEL. The light gray clouds are RBF network estimates of the true pointing
offsets, which are given by the dark “�” symbols.

good at both 15 and 45elevation where performance is nearly
identical to that of the RBF networks.

At 75 elevation, the antenna surface suffers significant dis-
tortion. The spatial distribution of power in the focal plane is
affected by these distortions, and a significant amount of power
appears in the outer horns. Furthermore, the assumption of a
quadratic error surface only appears to hold for a very small
neighborhood in this region, with a breakdown of the quadratic
assumption becoming evident as we move away from (0, 0) in
antenna offset space as shown in Fig. 10.

The RBF network is better able to deal with severe antenna
distortion as illustrated in Fig. 9 at 75elevation. Under the high
SNR conditions shown in Figs. 9 and 10, the clusters are very
small for both algorithms at 75elevation. The errors in the least
squares algorithm at this elevation are mostlysystematicwith
very little random error, indicating breakdown of the quadratic
surface assumption at high elevations when the antenna’s main
reflector is severely distorted.

Figs. 11 and 12, which highlight performance over region 3,
defined over mdeg in antenna offset space, are represen-
tative of results achieved for all five regions. Fig. 11 shows the
mean errors obtained with both the interpolated least squares
and RBF network algorithms. Both 1-s and 10-s integration
times are included in the error plots. Error standard deviations

TABLE III
QUADRATIC INTERPOLATEDLEAST SQUARESTRACKING PERFORMANCE AT

40 dB-Hz WITH 10-s INTEGRATION

Fig. 11. Tracking mean errorsXEL45 . We see that the mean estimation error
is typically less than 0.1 mdeg even under noisy conditions. This suggests that
typical systematic errors in estimation of pointing offsets are fairly small.

Fig. 12. Tracking error standard deviationsXEL 45 . The error standard
deviation is plotted as a function of SNR in (dB-Hz). Errors in estimating
antenna pointing are seen to be largely random with only a negligible systematic
component which was illustrated in Fig. 11. We see that the RBF network’s
performance is very similar to that of the interpolated least squares algorithm
used for comparison.

are illustrated in Fig. 12. In all cases, errors in mdeg are plotted
against SNR in dB-Hz.
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Fig. 13. Performance of RBF network trained on old data at 75. The black
“�” symbols denote the true pointing offsets, while the gray patches denote
multiple RBF network estimates. Training the RBF network on old data results
in significant systematic pointing errors which must be corrected by retraining.

RBF networks generally exhibit higher mean errors at low
SNR than the least squares algorithm. At medium-to-high SNR
the RBF network’s performance does not differ significantly in
terms of mean error. Furthermore, the error standard deviations
are comparable, indicating the RBF network comes close to the
performance of the quadratic interpolated least squares algo-
rithm. For 75 of elevation, the RBF network exhibits an ad-
vantage in terms of overall performance, mostly due to its ability
to better handle nonquadratic error surfaces which are charac-
teristic of severely distorted antennas. Overall, both algorithms
exhibit similar performance for tracking at elevations of 15 and
45 , while the RBF network performs better than the quadratic
interpolated least squares algorithm at very high elevations cor-
responding to severe antenna distortion.

We observe that both algorithms achieve the nominal
0.8 mdeg total pointing accuracy requirement at SNR above
approximately 20 dB-Hz at all elevations when 10-s integration
is used. This integration time is compatible with the practical
update rate of the antenna, and represents outstanding “weak
signal” performance. Above 30 dB-Hz, with 1-s integration,
both algorithms meet the 0.8 mdeg requirement corresponding
to 0.1 dB SNR loss, although pointing corrections generally
cannot be applied to the antenna at such a high rate.

C. Adaptive Tracking Results

As discussed in Section III-C, a simple affine transform was
used to simulate a changed antenna and to determine the perfor-
mance of the radial basis network on translational, shrink, and
stretch distortions.Six RBF networks were trainedonvoltage-to-
offset mappings representing the antenna in the “old” state. The
affine transform was used to change the voltage-to-offset map-
ping, and the RBF networks were simulated on the “new” an-
tenna state both before and after undergoing retraining.

In Fig. 13 (40 dB-Hz and 10-s integration times) we see that
the estimates (light clusters) corresponding to the antenna off-
sets from the RBF networks are very far from the dark “” sym-
bols denoting the new values. This illustrates the performance

Fig. 14. Performance of RBF network adapted with the LMS algorithm at 75.
The RBF network has been successfully adapted to the new data. Small errors of
a fraction of a mdeg remain, as evidenced by the fact that the gray clouds of RBF
pointing estimates differ somewhat from the actual pointing estimates given by
the black “�” symbols. However, this is a very significant improvement over
the performance prior to adaptation illustrated in Fig. 13, and these errors still
lie well within the DSN’s 0.8 mdeg accuracy requirement.

Fig. 15. Performance of RBF network adapted with the pseudoinverse method
at 75 . Since the pseudo-inverse method will calculate the best possible linear
combiner weights given the new data set and given a fixed radial basis layer,
we see that this network performs very well. The clusters of RBF pointing
estimates are centered very well on the black “�” symbols denoting actual
pointing offsets, illustrating the excellent performance of the pseudo-inverse
method in adapting the RBF network.

of the networks trained on old data representing, for example,
a pointing bias and scaling due to aging. Our objective is to re-
train the networks to remove the pointing bias by adapting their
linear combiners.

1) Adaptation Results:Using an updated set of training
data, the RBF networks were retrained using the LMS algorithm.
The resulting networks, with 10-s integration and an SNR of 40
dB-Hz, yield the performance illustrated in Fig. 14, which is
representative of results achieved at other elevations. Most of
the systematic pointing bias has been successfully removed.

The pseudoinverse method yields superior training perfor-
mance, as shown in Fig. 15, with most of the error caused by
the old training set well corrected after retraining is complete.
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TABLE IV
rms ERRORSOBTAINED WHILE TRACKING THE CASSINI SPACECRAFT:

NO LINEAR TREND SUBTRACTED

TABLE V
rms ERRORSOBTAINED WHILE TRACKING THE CASSINI SPACECRAFT:

LINEAR TREND SUBTRACTED

As with the LMS case, the results obtained at 75are represen-
tative of results obtained at other elevations. The LMS method
also yields acceptable performance, but LMS is a stochastic gra-
dient descent procedure. It is, therefore, only an approximation
to the true gradient descent algorithm, and even true gradient de-
scent takes many iterations to converge asymptotically to the op-
timal weight vector . By contrast, the pseudo-inverse method
calculates a set of weights which yields the lowest possible MSE
for a fixed radial basis layer [7], [10].

If near real-time updating is desired, it may be advisable to
use the LMS algorithm, although storing and averaging data to
form new training sets to update the linear combiner weights
using the pseudoinverse method would likely yield better per-
formance.

V. REAL-WORLD ACQUISITION AND TRACKING

Data collected during observations of the Cassini spacecraft
in 2001 were used to evaluate RBF networks and interpolated
least squares algorithms on the 70-meter antenna at Gold-
stone, CA. Since antenna dish deformation is highly elevation
dependent, data were gathered and tracking operations were
performed at elevations ranging from 6, the antenna’s lower
limit, up to 75 , the highest elevation achieved while tracking
Cassini.

While tracking the Ka-band carrier, the antenna pointing was
refined by means of a “five-point boresighting” algorithm that
introduced mdeg pointing offsets in two orthogonal direc-
tions along the line-of-sight. The algorithm then measured the
signal power in the central horn (channel 1) at each offset as
well as with no offset (nominal on-source direction) and com-
puted a pointing update based on a quadratic fit to the data. After
a few iterations, the magnitude of the updates approached zero,
and the signal power in the central channel was maximized: this
was considered to be the true “on-source” direction. The antenna
was allowed to track the source using its own tracking model,

Fig. 16. Day 68 RBF track of Cassini with antenna descending from 62.9
to 59.2 elevation. Pointing errors were intentionally applied in order to test
the RBF network’s ability to recover quickly and accurately. It can be seen that
the RBF network quickly returns antenna pointing to the long-term trend line,
illustrating the system’s ability to keep the antenna pointed accurately on source.

Fig. 17. One of the day 68 RBF tracks of Cassini with antenna descending
from 62.9 to 59.2 elevation. The RBF network is clearly able to recover from
the intentionally applied pointing error, allowing a rapid return to peak SNR
operation. The objective here is to show that SNR pointing losses are effectively
minimized by the use of the RBF network for pointing control.

which takes into account both earth rotation and relative motion
of the spacecraft.

Following this fine-pointing operation, a raster-scan was ini-
tiated. The antenna was commanded to various predetermined
offsets from the nominal on-source direction, and the received
vector measured at each point. The data were taken at offsets
ranging from to mdegs with regular spacing of
1.00 mdeg in bothXEL andEL directions. Note that the zero-
offset case defines the effect of antenna distortions on the re-
ceived complex signals at that elevation, whereas the other cases
contain a mixture of both distortion and pointing effects. Only
the response of the six outer horns were used to train the net-
work, as explained in Section II.
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Fig. 18. Day 195 RBF track of Cassini with antenna ascending from 39.5
to 41.6 elevation. This illustrates the RBF network’s steady-state tracking
ability. The antenna ran under RBF network control for over 10 min, and the
algorithm continued to accurately track the long-term trend in the on-source
pointing direction very well.

Fig. 19. Day 195 RBF track of Cassini with antenna ascending from 39.5 to
41.6 s elevation. The RBF network effectively prevented pointing related SNR
losses for a period of over 10 min of steady-state tracking. The stable SNR attests
to the overall stability of the algorithm during long tracking periods.

A. Performance Evaluation: Tracking the Cassini Spacecraft

Cassini tracking operations carried out in 2001 provide a pic-
ture of RBF and interpolated least squares capabilities. These
operations were carried out in real-time with the algorithms con-
trolling the pointing of the 70-m antenna.

The physical antenna suffers from several possible sources
of pointing error which are not modeled in our simulations,
including small-scale vibrations of the mechanical structure.
However, real-world testing still tends to yield rms pointing
errors well under 0.8 mdeg, particularly at high SNR. The
antenna’s gross pointing is controlled by a computerized
model which uses “pointing predicts” to determine where the
spacecraft should be in the sky. These pointing predicts often
have errors in excess of 10 mdeg, necessitating the development

Fig. 20. Day 107 LS track of Cassini with antenna descending from 25.3 to
22.8 elevation. The interpolated least squares algorithm also does an efficient
job of correcting intentionally applied pointing errors, keeping the antenna
pointed accurately on-source. Here we see that the intentionally applied offsets
were corrected very rapidly, allowing a quick return to the on-source direction.

Fig. 21. Expanded version of track #3 of Fig. 20. A day 107 LS track of Cassini
with antenna descending from 25.3 to 22.8elevation. SNR recovery is very
rapid with the interpolated least squares algorithm, which does an excellent job
of correcting pointing-related SNR loss. Here we see the changes in SNR from
the time we deliberately apply a pointing error until the algorithm corrects the
antenna’s pointing, returning SNR to its peak value.

of fine tracking algorithms. For that reason, it is typical for the
spacecraft’s position in (XEL, EL) coordinate space to drift
slowly with respect to the pointing predicts. Any analysis of
rms tracking errors must, therefore, involve subtraction of this
slow drift from the pointing data. We report here in Tables IV
and V both sample (uncorrected) rms errors, and rms errors
with the long-term linear trend removed, for a number of tracks.

On “day 68,” that is, 68 days from the beginning of the year
2001, a 1-s integration scheme was used. In this case, five RBF
network outputs were averaged in order to calculate each up-
date. Additionally, a delay of several seconds was included to
permit the antenna sufficient settling time after each position up-
date command was sent. Consequently, pointing updates were
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Fig. 22. Measured rms errors inXEL andEL versus simulation errors. The measurements were carried out at the DSS-14 station, while tracking the Ka-band
downlink from the Cassini spacecraft.

issued every 15 s. Figs. 16 and 17 illustrate the RBF network’s
ability to recover from intentionally applied pointing errors in
bothXEL andEL. These tracks, which covered antenna eleva-
tions ranging from 62.9down to 59.2 with the antenna de-
scending, have very short steady-state portions since the em-
phasis was on verifying the ability of the RBF network to deal
with relatively large errors that may arise in the course of rou-
tine tracking. This is, in effect, an evaluation of the network’s
“acquisition” performance. The RBF network was able to cor-
rect intentionally applied pointing offsets, quickly pointing the
antenna toward its nominal “on-source” direction. In Fig. 17, we
see an example of the sharp climb in SNR that results from the
pointing correction applied by the RBF network.

On “day 195,” a different methodology was used. Inputs to
the RBF network were the result of 1-s integration, and the net-
work outputs were not averaged, but a delay of several seconds
was applied, resulting in 6-s updates. No error offsets had been
applied, but the track lasted about ten minutes, allowing obser-
vations of stability to be made. Total rms pointing errors re-
mained 0.34 mdeg or less throughout, and central and combined
channel SNR remained stable as shown in Figs. 18 and 19.

Interpolated least squares tracks were also performed,
yielding very similar results. Figs. 20 and 21 illustrate this
algorithm’s ability to correct intentionally applied pointing
offsets. As with the day 68 RBF tracks, we see the system
is able to correct intentionally applied pointing errors, thus
restoring the antenna to its nominal “on-source” pointing
direction. The recovery of lost SNR is readily apparent. It
should be noted that in space communications the loss of one
decibel can significantly increase the cost of a mission, making
accurate pointing a high priority.

A summary of measured error standard deviations is pre-
sented in Fig. 22. This figure shows simulated rms errors over
region 1 as defined in Table I, which is just the origin (0, 0)
in (XEL, EL) space. Previous figures focused on region 3. We
note that the simulation curves provide a lower bound for the
actual error standard deviations. Since the simulations do not
model others causes of error, such as small amplitude vibrations
due to imperfections in the gears, and buffeting by light wind,
etc., it is expected that real-world rms errors will be somewhat
higher than those obtained in simulation. However, we note that
these errors lie well within the DSN pointing requirement of
0.8 mdeg. Similar results were obtained for the interpolated least
squares algorithm. We also point out that the simulated curve for
region 1 was generated only for the 45case, while these data
were taken at elevations ranging from 37to 61 , so some dis-
crepancies are unavoidable.

VI. CONCLUSION

We have shown that both interpolated least squares and
adaptive RBF networks, working in conjunction with an array
feed compensation system, can point a 70-m deep space
antenna with rms errors of 0.1–0.5 mdeg, under a wide range
of signal-to-noise-ratios and antenna elevations, achieving sig-
nificantly higher accuracies than the 0.8-mdeg benchmark for
communications at Ka-band frequencies of 32 GHz. As such
they demonstrate clear potential for highly accurate pointing of
the 70-m DSN antennas, which is a challenging problem due to
a multitude of time-varying distortions imposed on the antenna
structure on a continuous basis.
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Results indicate that RBF networks perform as well as
the quadratic interpolated least squares algorithms at varying
antenna elevations for tracking and acquisition, and under a
wide range of SNR conditions. At high antenna elevations, the
quadratic interpolation method deteriorates for any significant
offset from the “on-source” direction, making RBF networks
especially attractive during high elevation operations.

Long-term adaptation of our algorithms for distorted an-
tennas has also been shown to result in significantly improved
performance. We have shown that adaptation of the linear com-
biner weights in the RBF network yields excellent performance
for simple stretch, shrink, and translational distortions.

The system described in this paper has been tested while
tracking the Cassini spacecraft using the 70-m antenna at
Goldstone, CA. Very accurate pointing has been achieved, with
total rms pointing errors often below 0.5 mdeg and sometimes
as small as 0.3 mdeg, particularly under high SNR conditions.
This provides strong evidence that RBF networks and interpo-
lated least squares algorithms both have significant potential
for achieving accurate and robust antenna pointing control for
Ka-band communications.

Future research should focus on improved adaptation strate-
gies based on the use of power gradients for the purpose of adap-
tation. This has significant potential, and the authors hope to
use it in conjunction with a “modified-LMS” or “modified pseu-
doinverse” strategy to update RBF combining weights, allowing
the system to adapt to slow changes in the antenna. Additionally,
there are plans to use both RBF networks and interpolated least
squares algorithms to extract higher order information from the
complex voltage data. Such information can be used to control
adaptive RF optics systems to further reduce SNR losses and
improve operating efficiency. Preliminary simulation work on
these strategies is presently in progress.
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