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Abstract - Many research papers have been published on first present a [1-3] model for a typical TCP flow, based on
RED (Random Early Detection) and variants of RED [1-12]. the fluid dynamics theories.
Recently many articles have been presented on modeling a
Transmission Control Protocol (TCP) flow in an Active Queue I. TCP MODELING
Management (AQM) of a bottlenecked network link [1-3].
Classical control theories have also been applied to achieve or The following nonlinear equations describe the behavior of a
improve stability of the network flow [4]. In this paper we typical bottlenecked network gateway
present a Neural Network (NN) Model Predictive Control (MPC)
of TCP flows. We show the robust adaptive behavior of the MPC
optimal controller under modeling errors and system dynamic d W(t) 1 W(t) W(t - R(t))
changes. We also show the superior transient and steady state -p(t - R(t)) (1)
behavior as well as general stability of MPC as compared to the dt R(t) 2 R(t - R(t))
Classical PI controller.

dq N
I. INTRODUCTION dt W(t) (2)dt R(t)

The computer network congestion control problem has been a q(t)
recurring theme for many years. A feedback-based congestion R(t) = + T (3)
control scheme is required to ensure trouble-free service for C
data transmission on a bottlenecked network link. The main
objective has always been to use network resources efficiently where
to prevent the data packet loss, which requires retransmission
of the lost information. Most currently in-use networks have a W Exece length (packets)
window-based flow control for the Transmission Control q RoQueue length (packets)
Protocol. The size of the window length is used as a feedback R Round trip time (sec)
mechanism to control the network's congestion problem. As C Lncpacity ( sec)
an example, packet losses are used as the feedback signal for T ropagation delay (sec)
reducing the queuing window size in TCP Reno. This N Number of TCP sessions
congestion control protocol increases the window length P Probability of packet marked/drop
gradually until such time that a packet loss occurs at the
gateway, indicating that the transmission bandwidth limits
have been reached. At this point, if the transmission source W E [O, Wmaj q E [O, qma,]
keeps increasing its window length more packet losses will
occur. Therefore, as soon as a packet loss is detected, the Now linearizing [2-3] these equations about an operating
source host will reduce its window size to avoid network point Qo (WO, Ro, q0, po), we obtain
congestion.

N RC
Another popular congestion control scheme is TCP RED. In SW(t) = -- [6W(t) + 6W(t - RI)] - 0 2p(t -R1) (4)
this algorithm for controlling queuing window size, RED Ro C 2N
gateway randomly drops the incoming packets proportional to . N 1
the average queuing length. The longer the window length the 8 q(t) = + SW(t) - -q(t) (5)
higher would be the probability of dropping received packets. Ro Ro
The fundamental idea behind TCP RED is to keep the queuing
length to a minimum. where

Since TCP RED is a feedback control problem, we can apply W(t) -W(t) - W
classical [4] as well as modemn control theories to adjust the
size of the queuing window. Since most control system dq(t) - q(t) - q
designs are based on a mathematical model of the system we dp(t) - p(t) - p0
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The total transfer function of the system can be obtained by ()A (S
taking the Laplace transform of these equations HyS)

N

gq(s) R
H (s)= -= (6)

S +R ] Figure 3: RED feedback Block

The positive feedback is due to an internal 180 degrees phase

RC2 , shift between the input and output of the HT(S).0
e

HTC (s) =W 2 (7) pT

dp(s) - N

-[~~~~~~~ 1-- --------------

Window Queue Figure 4: RED Nonlinear feedback function

Pmax

Figure 1: TCP model

Using Pade's approximation to represent the time delay with a .. q . q
rational number we obtain {Ia~r r

p(q) Pmax q qmax (10)
1- R s0 2? NR s

-RoR 2 2 (8) 1 qmax
1RR

1+2u Equation (10) is the piecewise function describing the
standard RED algorithm.

1-g - R'C N1. NEURAL NETWORK MODEL PREDICTIVE CONTROLLER (NN-

Hl (s)=H(-'(s)Hr (s)= 2? 2N^ IQ (9) PMC)

~~2 LR2 OI

Delay Window Queue
Figure 2: AQM linear model

Figure 2shows the linear model ofthe TCPwindow-control Algorithm
system. The standard RED controller is shown if Figure 3.

Figure 5: Predictive Model

Plant forward dynamics identification is at the first stage of
any model predictive control structure. Figure 5 shows a
neural structure for the system model identification [14]. The
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neural plant model and the actual system outputs are 6qm: is the predicted NN response
compared and an error signal is generated which is used to
train the neural network. The plant parameters, and the 6qr: is the desired reference trajectory
network weights are changes such that the error signal is p is the control input weight
minimized. The standard form for model identification is
given by It is important to mention that N1, N2, N1, and p are design

parameters. With proper selection of these parameters a
Sq(k + d) = h[Sq((k), Sq(k - 1), , Sq(k - n + 1), balance between the reference tracking trajectory and the

S5p(k), Sp(k - 1), *, S3p(k - m + 1)] control input effort is achieved.

Where 6p is the system input, 6q is the system output and d is II. SIMULATION RESULTS
the system delay. The main objective of the identification Figure 7 shows the simulation block diagram of the model
process is to find the function h. In this application we train a predictive and the PI controllers. The network topology that
neural network to approximate the nonlinear function h. we have considered consisted of a single bottleneck network

with 40 ms round trip delay and channel capacity of 2000
Controller packets/sec. The network traffic consists of 50 identical long-

lived TCP sessions with RED parameters set to qm1in= 200
packets, qmax 800 packets, and Pmax 0.5.

................... .......

.po BPO , . .Figure 8 shows the simulation results with qref set to 560
packets and 10 TCP sessions dropping at 5 seconds into the
simulation. As can be seen both algorithms perform well
under normal operating conditions, but PI has much worse

L , Plant Modeltransient response at onset of the dropped session which
causes the dynamics of the plant to change.

Figure 9 shows that, as the number of TCP drop out sessions
Lp HA,ST(s) I , increases, the overshoot transient behavior of the PI controller

t)bq becomes unacceptable and approaches instability with
oscillatory queuing window size changes between 900 to 200

Figure 6 Neural MPC packets in less than a second.

Figure 6 shows the structure of a typical neural model We can see from Figure 10 that the PI controller becomes
predictive control. The reference output signal, 6q, which unstable when 25 TCP sessions drop, but the MPC controller
could be the output of a reference model, is the input to the performs gracefully with no overshoot. Note that the queuing
cost function minimization (CFM) block. CFM block window length is inversely proportional to the number of TCP
produces input signals for the NN and the plant. The output of sessions, so as the number of the TCP sessions drops, the
the plant is fed back into the NN and the output of this block queue window length increases.
is used to adjust the CFM parameters. CFM block uses a
predictive numerical optimization algorithm to generate the
input signal for the system such that the following cost
function is minimized

N2

J E [8q(k + j)-_8q.(k + j)]2 +

N=AT, (12)

p + [Sp (k + j -1) - Sp (k + j - 2)]2
j=1

where

N1: is the minimum tracking horizon
N2: is the maximum tracking horizon
N11: is the control signal horizon
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P = 1,1=2
4500

4000 - P III. CONCLUSION
3500 - NNMPC In this work, we have shown the superior, transient, steady

-e 3000 state behavior and the general stability ofMPC over the PI
S2500 controller as it is applied to optimize the length of a TCP

(1) 2000 l queuing window in a bottlenecked AQM link. The adaptive
N nature of the MPC controller algorithm exhibits a stable
C/) 1500

behavior under modeling Although PIa)D 1000 controller performs very well under normal operating

=3s 500 - Z - I I / \ / \ / \ / \ / - conditions, it produces extreme oscillatory responses under
0 modeling error.
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