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ABSTRACT
We consider the problem of jointly maximizing the time-to-

first-failure (TTFF), defined as the time till the first node in
the network runs out of battery energy, and minimizing the
total power in energy constrained static wireless networks.
It is shown in [6] that simply optimizing the TTFF criterion
may not provide the ideally optimum solution. Besides max-
imizing the TTFF, the ideally optimum solution guarantees
that the lifetimes of all nodes are at least as high as in other
trees which provide the same TTFF. A composite objective
function involving the TTFF and the sum of the transmitter
powers is therefore proposed in [6], along with a discussion
of an optimal solution methodology using mixed integer lin-
ear programming. In this paper, we discuss a 2-step heuristic
procedure for the joint optimization problem. The first step
is a greedy iterative algorithm which provides an optimal so-
lution, but with respect to the TTFF criterion only. The sec-
ond step is a tree-improvement technique which is used to
refine the TTFF-optimal tree such that the total transmitter
power is minimized, without affecting the optimal TTFF. Re-
cent work has shown that the power consumed in the receiver
circuitry can be almost comparable to the transmit power, es-
pecially in short-range networks. Our algorithms are there-
fore designed to take into account both the transmitter side
and receiver side power expenditures. Simulation results are
presented to validate the performance of the algorithm.

I. INTRODUCTION

We consider the problem of jointly maximizing the time-
to-first-failure (TTFF), defined as the time till the first node
in the network runs out of battery energy, and minimizing
the total transmit power in energy constrained static wireless

networks. In applications where replacement/maintenance of
such batteries is difficult or infeasible, it is of utmost impor-
tance to design routing protocols which maximize the life-
time of the network. A metric commonly used to define the
lifetime of a network is the duration of time before any node
in the network runs out of its battery energy. We define this
time to be the time-to-first-failure (TTFF), also known as sys-
tem lifetime or network lifetime in the literature. To the best
of our knowledge, this problem was first addressed by Chang
and Tassiulas for an unicast application [1]. Subsequent re-
search in this area for unicast as well as multicast applica-
tions has been reported in [2], [3], [4] and [5].

It is shown in [6] that simply optimizing the TTFF crite-
rion may not provide the ideally optimum solution. Besides
maximizing the TTFF, the ideally optimum solution guaran-
tees that the lifetimes of all nodes are at least as high as in
other trees which provide the same TTFF. A composite ob-
jective function involving the TTFF and the sum of the trans-
mitter powers is therefore suggested in [6]. In this paper,
we discuss a 2-step heuristic procedure for solving the joint
optimization problem. For a multicast application, the first
step is the MDLT algorithm [7], which is followed by a tree-
improvement phase. This latter phase aims to reduce the total
transmitter power of the tree, without worsening the TTFF.

The rest of the paper is organized as follows. We outline
the network model in Section II, which is followed by a brief
definition of the problem in Section III. A brief review of the
MDLT algorithm is provided in Section IV. In Section V, we
discuss the improvement procedure for refining the MDLT
tree. Simulation results are presented in Section VI.
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II. NETWORK MODEL

We assume a fixed N -node network with a specified
source node which has to broadcast (multicast) a message
to all (some) other nodes in the network. We assume static
broadcasting (multicasting); i.e., the same tree is used for
the entire broadcast (multicast) duration. Any node can be
used as a relay node to reach other nodes in the network. All
nodes are assumed to have omni-directional antennas, so that
if node i transmits to node j, all nodes closer to i than j will
also receive the transmission (provided line-of-sight exists).

We assume that, for a transmission from node i to j, the
received signal power at j varies as d−α

ij , where

dij =
[

(xi − xj)
2 + (yi − yj)

2
]1/2

is the Euclidean distance between nodes i and j, (xi, yi)
are the coordinates of node i and α (typically in the range
2 ≤ α ≤ 4) is the channel loss exponent. Consequently, the
transmitter power at i necessary to support the link (i → j),
Pij , is proportional (accounting for link and antenna gains)
to dα

ij . Without any loss of generality, we set the proportion-
ality constant to be equal to 1 and therefore:

Pij = dα
ij (1)

The transmit power matrix of a network, P, is an N × N
symmetric matrix whose (i, j)th element, Pij , represents
the transmission power required at node i to support the link
(i → j)1. We denote the set of all nodes in the network by N
and N = |N |.

In order to capture the effect of the power expenditure at
the receiver circuitry on the node lifetimes, we introduce a
link cost matrix, Cij , whose (i, j)th element, Cij , is inter-
preted as the total cost of activating the link (i → j). Specif-
ically, Cij comprises a transmitter power cost at i, Pij (1),
and a receiver power cost at j, denoted by P rx

j :

Cij = dα
ij + P rx

j = Pij + P rx
j (2)

Strictly speaking, there is also an additional power consump-
tion in the transmitter circuitry. We assume that this term is
negligible compared to the antenna power, dα

ij .
It should be noted that if the elements of the transmit

power matrix, P, satisfy the triangle inequality (which it may
not because of the exponent α) - i.e., for any 3 nodes i, j and
k, Pij + Pjk ≥ Pik - and if P rx

j is identical for all nodes
j ∈ N , the optimal solution will be the same whether or

1In this paper, we assume that all links (edges) are directed. The notation
(i → j) will be used to denote a directed edge from node i to j. The
notation (i, j) will be used to refer to the node pair.

not the receiver power component is included in (2). If the
triangle inequality is not satisfied, the optimal solution may
vary significantly depending on whether the receiver power
component is factored in or not, as illustrated in Figure 1.

Fig. 1. (a) The costs of the links represent the Pij’s and do not satisfy
the triangle inequality. The least cost path from node A to C is the 2-hop
path A → B → C. (b) The costs of the links, including a receiver power
component, P rx

j = 0.5, for all nodes j. In this case, the least cost path
from A to C is the 1-hop path A → C.

III. PROBLEM STATEMENT

Let E(t) be a vector of node residual energies at time t,
the ith element of E(t) representing the residual energy of
node i at time t, and Y be a vector of average node powers.
The element Yi represents the average power expenditure of
node i and is defined as follows:

Yi = Y tx
i + Y rx

i (3)

where Y tx
i and Y rx

i represent the power consumption at
nodes i and j due to transmission and reception activities re-
ceptively. Define Xij to be a binary variable which is equal
to 1 if the link (i → j) is chosen in the optimal solution and
0 otherwise. Then, the components Y tx

i and Y rx
i are given

by:

Y tx
i = max (XijPij : j ∈ N , j 6= i) (4)

Y rx
i = max (XjiP

rx
i : j ∈ N , j 6= i) (5)

We assume that each node has a constraint on maximum
transmitter power, denoted by Pmax

i . That is, Y tx
i ≤ Pmax

i ,
∀i ∈ N .

Also, let s denote the source, E the set of all directed edges
and D the set of destination nodes, D ⊆ N \ s. The cardi-
nalities of E and D are E and D respectively; i.e., E = |E|
and D = |D|. Using the transmitter power constraint, the set
of all edges, E , is given by:

E = {(i → j) : (i 6= j) ∈ N , Y tx
i ≤ Pmax

i , j 6= s} (6)

Defining Li(t)
△

= Ei(t)/Yi to be the lifetime of node i, the
problem of maximizing the TTFF can be written as:

maximize {mini∈NLi(t)} (7)
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Note that the value of the expression within curly braces in
(7) is dependent on the time index t and hence, strictly speak-
ing, should be termed residual−time−to−first−failure.
However, we will refer to it simply as the time-to-first-
failure, implicitly recognizing its dependence on the time ori-
gin t. Accordingly, henceforth in this paper, we will simply
use the notations Ei and Li instead of Ei(t) and Li(t). We
now express the objective function in (7) as a minimax opti-
mization problem as shown below:

maximize(mini Li) = maximize (mini Ei/Yi)

= minimize (maxi Yi/Ei) (8)
= minimize σ (9)

where σ = maxi (Yi/Ei) = 1/τ and τ is the TTFF.
As explained in [6], simply optimizing the TTFF criterion

may not yield the best possible solution. Specifically, it was
shown that the transmitter power levels of all nodes are not
guaranteed to be minimal, thereby leading to a reduced aver-
age node lifetime. We therefore proposed the use of a joint
objective function involving the TTFF criterion and the sum
of average node powers2:

minimize w1σ + w2

N
∑

i=1

Yi (10)

where
∑N

i=1 Yi is the sum of average node powers and
{w1, w2} are suitably chosen non-negative penalty factors.
The first parameter in (10), σ, is viewed as the global cost
while the second parameter,

∑N
i=1 Yi, is viewed as the sum

of local costs.
In this paper, we are concerned primarily with the case

when w1 >> w2 6= 0. For a proper choice of these param-
eter values, it is possible to obtain the “best possible” tree
which maximizes the TTFF while ensuring that the solution
is the most power efficient among the set of all trees with op-
timal TTFF. In the following sections, we describe a 2-step
heuristic procedure for solving this special case of the gen-
eral optimization problem (10). The first step is the MDLT al-
gorithm [7], which is followed by a tree-improvement phase
which aims to reduce the total transmitter power of the tree,
without worsening its TTFF.

IV. BRIEF REVIEW OF THE MDLT ALGORITHM

A. Notation
k = iteration number

2The optimization model in [6] considered transmit powers only. How-
ever, it can be easily modified to account for power consumption due to
reception if Yi’s are defined as in (3).

T k = connection tree grown till iteration k
τk = lifetime of the partially grown tree T k

NR
k = all nodes reached till iteration k

NNR
k = nodes not reached at the end of iteration k

△
= N \ NR

k

B. The algorithm

In this section, we briefly review the minimum decremen-
tal lifetime (MDLT) algorithm for optimizing the objective
function in (10) with w2 = 0. A detailed description can
be found in [7]. While the algorithm in [7] considers trans-
mit powers only, the review here generalizes the procedure to
include both transmit and receive powers. The proof of op-
timality provided in [7] extends straightforwardly when both
transmit and receive powers are accounted for.

Procedure MDLT is an iterative greedy algorithm wherein
one new node is spanned into the tree at each iteration. For
k = 0, we initialize:

NR
0 = s, NNR

0 = N \ NR
0, T 0 = ∅, τ0 = 0 (11)

For any k ≥ 1, an edge is chosen from a list of candidate
edges defined as follows:

edge listk = {(i → j) : ∀i ∈ NR
k−1,∀j ∈ NNR

k−1,

(Ei/Pij , Ej/P
rx
j ) ≥ L/R, (i → j) ∈ E} (12)

where L is the total number of bits to be transmitted during
the multicast session and D is the data rate in bits per second.
The first two conditions in (12) allow transmissions from any
node which has been spanned into the tree by iteration k− 1,
to any node not yet spanned in. The third condition in (12),
which is to be interpreted as requiring both Ei/Pij ≥ L/R
and Ej/P

rx
j ≥ L/R, is the session duration support crite-

rion and prevents nodes lacking sufficient battery capacity
from participating in the multicast tree as a transmitter or a
receiver, or both.

The edge (i → j) is chosen to be included in the connec-
tion tree at iteration k if:

min

(

Ei

Pij
,

Ej

Prx
j

)

< min
(

Em

Pmn
,

En

Prx
n

)

(13)

where (i → j) ∈ edge listk, (m → n) ∈ edge listk and
(m → n) 6= (i → j). After the edge is chosen, the sets NR

k

and NNR
k are updated as follows:

NR
k = NR

k−1 ∪ j , NNR
k = N \ NR

k (14)
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The lifetime of the connection tree after inclusion of the edge
(i → j) at iteration k is given by:

τk = min
(

τk−1, Ei/Pij , Ej/P
rx
j

)

(15)

The algorithm terminates when all destination nodes are
reached. The worst case time complexity (corresponding to
a broadcast application) of the algorithm is O(|N |2).

C. Pruning the MDLT tree
Given a directed graph, G, the descendants of node i, de-

noted by de(i), is defined as the set of nodes, {j}, such that
there is a path from i to all nodes in {j}. That is,

de(i)
△
= {j | i 7→ j but not j 7→ i}

where (i 7→ j) is a directed path from node i to node j. Con-
versely, the non-descendants of node i, denoted by nd(i), is
defined as:

nd(i)
△
= N \ {i ∪ de(i)}

For a multicast application, the MDLT tree can have a lot of
redundant edges. An edge, (i → j), is deemed to be redun-
dant if j itself is not a destination node or none of the descen-
dants of j is a destination node. The MDLT tree must there-
fore be pruned to eliminate all redundant edges before the
tree-improvement algorithm is applied. Note that the pruning
step itself may lead to a reduction of total transmitter power
in the tree, which can be quite substantial if D/N << 1.

V. ALGORITHM FOR IMPROVING MDLT TREES

As mentioned in the previous section, the MDLT algo-
rithm generates optimal trees, but only with respect to the
TTFF criterion. In this section, we explain a variant of the
1-shrink algorithm3 which can be used to reduce the total
transmitter power of the MDLT tree “without worsening the
TTFF”. We name this algorithm 1-shrink for MDLT.

Given a transmission from node i to node j, with nodes
α0, α1, · · · and αk covered implicitly, let {α0, α1, · · · , αk,
j} be an ordering of the nodes with respect to their distance
from i. That is, α0 is closest to i, α1 is second closest, · · ·
and j is the farthest from i. The 1-shrink operation applied
to node i implies a reduction of its transmission power level
(or, shrinkage of its transmission radius) by 1 notch, such
that the farthest node now reached is αk instead of j. For
example, applying the 1-shrink operation to node 4 in Figure
2(a) would result in it transmitting to node 3, leaving node 1
disconnected.

3The original algorithm was proposed in [8] for refining sub-optimal
minimum power broadcast trees.

Fig. 2. (a) Example multicast tree. Node 6 is the source. The solid lines
imply actual transmissions and the dotted lines imply implicit transmis-
sions. For example, 6 → 2 is an implicit transmission since node 2 is
closer to node 6 than 4. In this tree, node 6 (the source) is said to be at
level 0, nodes 2 and 4 at level 1, nodes 1 and 3 at level 2, and node 5 at
level 3. Clearly, if the maximum level in a digraph is MAX LV L, all
nodes at level l = MAX LV L will be leaf nodes. Conversely, the maxi-
mum level parent nodes in such a digraph can occupy is MAX LV L−1.
(b) Result of applying the 1-shrink operation to node 4. Note that (4 → 3)
is now an actual transmission.

Clearly, the 1-shrink operation can be applied only on par-
ent nodes in a digraph. Since our intention is to improve
the MDLT tree without worsening the TTFF, we exclude the
critical node of the MDLT tree from the set of parent nodes
to which the 1-shrink operation can be applied. Given the
optimality of the MDLT algorithm, it should not be possible
to improve the TTFF by shrinking the transmission radius of
the critical node and assigning a new parent (discussed subse-
quently) to the temporarily disconnected child. Additionally,
the 1-shrink operation is applied to the source node only if
its number of children is greater than 1. This prevents the
possibility of the source being a leaf in the graph. The set of
candidate parent nodes in a digraph which can be subjected
to the 1-shrink operation is therefore:

• {all parent nodes} \ cr nodeMDLT , if | ch(s) |> 1.
• {all parent nodes} \{cr nodeMDLT ∪ s}, otherwise.

where cr nodeMDLT is the critical node of the MDLT tree
and ch(s) is the set of all children of the source. For example,
in Figure 2(a), ch(s) = ch(6) = {2, 4}.

Given the pruned MDLT tree, represented as a digraph
rooted at the source, the algorithm works by sequentially
applying the 1-shrink operation to the parent nodes in the
graph and checking whether the children, which have been
temporarily disconnected from the graph as a result of the
shrinkage operation, can be better accommodated from any
of their non-descendants, excluding the current parent and
the critical node of the MDLT tree. If node i is a child of
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j, the set of the non-descendants of i, excluding its current
parent and the critical node of the MDLT tree, is given by
nd(i) \ {j ∪ cr nodeMDLT }. We will refer to members of
such a set as the foster parents of node i, denoted by fpa(i).4
Therefore:

fpa(i)
△
= nd(i) \ {pa(i) ∪ cr nodeMDLT } (16)

For example, assuming that node 6 is the critical node in
Figure 2, fpa(1) = nd(1) \ {pa(1) ∪ cr nodeMDLT } =
{2, 3, 4, 6} \ {4, 6} = {2, 3}.

The criteria used to determine whether a temporarily dis-
connected child retains its existing parent or is assigned a
new parent from the set of its foster parents are: (1) incre-
mental and decremental transmit power costs (2) TTFF vi-
olation (3) maximum transmitter power constraint and (4)
session duration support. Criteria (2), (3) and (4) are re-
quired since the tree-improvement algorithm may increase
the transmitter power of certain nodes. We describe each of
the criteria below.

• For a node i transmitting to node j, the incremental
transmit power cost of adding node k to its reach is
Pik − Pij . If i is a non-transmitting node, the incre-
mental cost of adding node k to its reach is Pik.
For a node i transmitting to node j, with nodes α0, α1,
· · · , αk (arranged in order of increasing distance from i)
covered implicitly, the decremental transmit power cost
for letting node j out of its reach is Pij − Piαk

. If
no node is covered implicitly, the decremental transmit
power cost for letting node j out of its reach is Pij .

• Criterion (2) ensures that the TTFF of refined tree is the
same as the optimal TTFF obtained using the MDLT
algorithm.

• Criterion (3) ensures that the transmitter power levels
assigned to the nodes after the improvement phase do
not violate the maximum power constraint.

• Criterion (4) ensures that the residual lifetimes of the
participating nodes in the improved tree are greater than
or equal to the session duration, L/R, where L is the
total number of bits to be transmitted and R is the data
rate in bits per second.

For example, assume that Figure 2(a) is the MDLT tree.
Let node 6 be the critical node with an associated TTFF of
τ̂ = E6/P64. If we apply the 1-shrink operation to node 1,
resulting in the disconnected graph shown in Figure 3(a), the
incremental cost of assigning node 5 as a child of node 4 is
equal to P45 − P41 and the decremental cost at node 1 for

4Note that restricting the foster parents to the set of the non-descendants,
excluding its current parent, prevents the occurrence of cycles in the im-
proved graph.

letting node 5 out of its reach is P15. Node 5 can be better
accommodated from node 4 if all the following conditions
are satisfied:
(a) P45 − P41 < P15

(b) E4/P45 ≥ τ̂ = E6/P64

(c) P45 ≤ Pmax
4

(d) E4/P45 ≥ L/R

where (b) is the TTFF violation check, (c) is the maximum
power constraint and (d) is the session duration check. Note
that only transmit power is accounted for in condition (a)
since node 5 is a receiver in both the original tree (Figure 2a)
and the improved tree (Figure 3b) and P rx

5 is independent of
the choice of the transmitting node.

Fig. 3. (a) Temporarily disconnected graph as a result of applying the
1-shrink operation on node 1 in Figure 2. (b) Improved tree obtained by
assigning node 5 as a child of node 1.

In general, if i ∈ ch(j) and k ∈ fpa(i), i can be better
accommodated from k after applying a 1-shrink operation on
j, if the following conditions are satisfied:

• ∆Y
(+)tx
k < ∆Y

(−)tx
j

• Ek/Pki ≥ τ̂ and Ek/Pki ≥ L/R (17)
• Pki ≤ Pmax

i

where ∆Y
(+)tx
k is the incremental transmit power cost at

node k, ∆Y
(−)tx
j is the decremental transmit power cost at

node j and τ̂ is the TTFF of the MDLT tree. If there is more
than one foster parent better able to accommodate the tem-
porarily disconnected child, the one which would lead to a
maximum reduction in overall tree power is chosen to be the
new parent. Ties, if any, are broken arbitrarily.

The sequence in which the candidate parent nodes are
checked is bottom-up; i.e., parents at level (see Figure 2)
MAX LV L−1 are checked first, followed by those at level
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MAX LV L − 2, terminating with the source at level 0. If
an improvement is found at any step, the graph is modified
by reassigning the temporarily disconnected child to its new
foster parent and the algorithm is repeated on the new graph.

Figure 4 provides a high level description of the 1-shrink
for MDLT algorithm.

1. Let G be the MDLT tree, represented as a digraph rooted at the
source.
2. Set MAX LV L = maximum level in G;
3. Set l = MAX LV L − 1;
4. Set ~pal = set of candidate parent nodes at level l;
5. Set no pa = no. of candidate parent nodes at level l = | ~pal|;
6. Set n = 1;
7. Apply the 1-shrink operation to the candidate parent node
~pal(n). Check whether its temporarily disconnected child, i, can
be better accommodated from any node in the set fpa(i) (see eqns.
16 and 17).
8. if (better accommodation possible)

• Identify the foster parent which will lead to a maximum
reduction in tree cost. Modify G by assigning this node
to be the new parent of node i.

• Repeat steps 2 to 8 on the new G.
else

if (n < no pa)
/* Not all candidate parent nodes checked at level l */
• n = n + 1;
• Repeat steps 7 and 8.

else

/* All candidate parent nodes checked at level l */
if (l > 0)

• l = l − 1;
• Repeat steps 4 to 8.

else

/* All candidate parent nodes checked at all levels */
Stop and print G. /* End of procedure */

endif

endif

endif

Fig. 4. High level description of the 1-shrink for MDLT algorithm.

VI. SIMULATION RESULTS

We conducted a study of the performance of optimal and
heuristic methods for different multicast group sizes in 15,
30, 50, 75 and 100-node networks in a 10 × 10 grid. The
channel loss exponent α (see eqn. 1 or 2) was set to 2 for all
simulations. Receiver power consumption was equal to 0.01,
i.e., Prx

j = 0.01, ∀j ∈ N in (2). The networks and the des-
tination sets were chosen so that all destination nodes could
be reached, given the transmitter power constraints. Trans-
mitter power constraints were set so that each node was con-
nected to its 4 nearest neighbors. The linear programming

solver, LINDO [9], which uses a LP-based branch and brand
algorithm to solve MILP problems, was used to compute
the optimal solutions. In this section, we use the notation
Hr1 to represent “without tree-improvement” heuristic solu-
tion (i.e., MDLT + pruning) and Hr2 to represent “with 1-
shrink tree-improvement” solution (i.e., MDLT + pruning +
1-shrink for MDLT, in that order). Note that we do not com-
pare the TTFF of the optimal and heuristic solutions since
the tree-improvement algorithm does not affect the optimal
TTFF.

Our performance measures for comparing the optimal and
heuristic solutions are the mean (PM1), max (PM2) and
standard deviation (PM3) of the quantity 100 × A−B

B . The
significance of the parameters A and B is described below.

For N = 15 and 30, we compare the performance of the 2-
step heuristic algorithm w.r.t the optimal, i.e., the parameters
A and B are

∑

i Yi(Hr2) and
∑

i Yi(opt) respectively. Ta-
ble I provides a statistical summary of the simulation results
for N = 15 and 30. It can be seen that, on average (PM1),
the improved solution is within 1.5% of the optimal solution
for all cases. The worst instance (PM2) we observed was
for N = 30, D = 9, when the total transmitter power of the
improved solution was approximately 30% higher than the
optimal.

TABLE I
Comparison of optimal and heuristic solutions for N = 15 and 30.

N D PM1 PM2 PM3

4 1.02 12.65 2.92
15 8 0.23 9.55 1.36

12 1.38 21.30 5.95
3 0.13 5.01 0.71

30 6 0.44 6.03 1.56
9 1.44 28.86 5.45

For N = 50, 75 and 100, we did not obtain the optimal
solutions due to the long running times of the LP software.
We therefore compare the performance of the heuristic al-
gorithm with and without the tree improvement procedure.
The parameters A and B for these network sizes are there-
fore

∑

i Yi(Hr2) and
∑

i Yi(Hr1) respectively. Table II
summarizes the performance of the heuristic with and with-
out the tree-improvement algorithm for all network sizes. It
can be seen that the improvement obtained by refining the
MDLT tree is close to 6% as the number of destination nodes
increases for N ≥ 50. Since the improvement algorithm
searches for better accommodations only within a subset of
the nodes existing in the initial tree, we conjecture that the
reason why improvement is not so significant for smaller ra-

6 of 7



TABLE II
Comparison of heuristic solutions with and without tree-improvement.

N D PM1 PM2 PM3

4 -1.58 69.17 11.47
15 8 -2.57 7.32 1.79

12 -4.32 15.29 4.39
3 -4.12 23.41 4.64

30 6 -2.32 8.89 1.95
9 -3.64 16.09 3.75
5 -3.97 16.70 3.94

50 10 -4.86 15.43 3.60
15 -5.31 16.78 3.52
5 -4.05 15.75 3.83

75 10 -5.41 20.96 4.12
15 -5.74 19.79 3.57
5 -5.62 28.06 5.43

100 10 -5.65 15.10 3.03
15 -6.72 14.60 3.46

tios of D/N is simply because the initial trees in such cases
tend to be “short and thin”, thereby limiting the set of feasible
foster parents and the improvement search space.

VII. CONCLUSION

We considered the problem of joint maximization of the
time-to-first-failure (TTFF) and minimization of the total
power in energy constrained static wireless networks. We
proposed a 2-step heuristic procedure for the joint optimiza-
tion problem. The first step is the MDLT algorithm which
provides an optimal solution, but with respect to the TTFF
criterion only. The second step is an improvement algo-
rithm which is used to refine the MDLT tree such that the
total transmit power is reduced, without affecting the opti-
mal TTFF. Simulations conducted on various network sizes
and multicast groups show that the improvement procedure
leads to a significant reduction in overall tree power. For
small networks, simulations show that the heuristic solutions
are near-optimal.
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