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Abstract
A new technique for adaptation of fuzzy membership functions in a fuzzy inference system is proposed. The

technique relies upon the isolation of the specific membership function that contributed to the final decision,
followed by the updating of this function’s parameters using steepest descent. The error measure used is thus
back propagated from output to input, through the min and max operators used during the inference stage. This
is feasible because the operations of min and max are continuous differentiable functions and therefore can be
placed in a chain of partial derivatives for steepest descent backpropagation adaptation. More interestingly, the
partials of min and max (or any other order statistic, for that matter) act as ‘pointers’ with the result that only the
function that gave rise to the min or max is adapted; the others are not. To illustrate, letα = max[β1;β2; � � � ;βN].
Then∂α=∂βn = 1 whenβn is the maximum and is otherwise zero. We apply this property to the fine tuning of
membership functions of fuzzy min-max decision processes and illustrate with an estimation example.

1 Introduction

Fuzzy membership functions chosen for a control or decision process may require adaptation for purposes of fine
tuning or adjustment to stationarity changes in the input data. Use of neural networks to perform this adaptation
has been proposed by Lee et al. [1]. Other techniques proposed can be found in [3], [4], [5]. Our method more
closely parallels that proposed by Nomura, Hayashi and Wakami [2]. In their work, membership functions were
parameterized and steepest descent was performed with respect to each parameter using an error criterion, in order
to obtain the set of parameters minimizing the error. To straightforwardly differentiate the error function with re-
spect to each parameter, they used products for the fuzzy intersection operation. The output error backpropagated
this way, was used to adjust the fuzzy membership functions.

In this paper, we show that the more conventionally used minimum operation for fuzzy intersection and max-
imum operation for fuzzy union can be similarly backpropagated. Unlike the method of Nomuraet al. which
updates all fuzzy membership function parameters in each stage, the method proposed herein results only in the
adjustment of the fuzzy membership functions that gave rise to the control action or decision output. Backpropa-
gation of fuzzy min-max rules allows for fine tuning and adaptation of membership functions using performance
data.

2 Differentiation of MIN and MAX Operations

Differentiation of the min or max operations results in a ‘pointer’ that specifies the source of the minimum or
maximum. To illustrate, let

α = max[β1;β2; � � � ;βN]

=
N

∑
π=1

βπ ∏̀
6=π

U(βπ�β`) (1)
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whereU(�), a unit step function, is 1 for positive arguments and is zero otherwise. Note that the max operator in
Eq. 1 is continuous and can be differentiated as

∂α
∂βn

= ∏̀
6=n

U(βn�β`)

=

�
1 ; if βn is maximum
0 ; otherwise

(2)

Similarly, let

δ = min[γ1;γ2; � � � ;γM]

=
M

∑
π=1

γπ ∏̀
6=π

U(γ`� γπ) (3)

The min function is also continuous and

∂δ
∂γn

= ∏̀
6=n

U(γ`� γn)

=

�
1 ; if γn is minimum
0 ; otherwise

(4)

Indeed, any order statistic operation (e.gthe third largest number or, forN odd, the median) can likewise be
differentiated. In each case, the partial derivative points to the number or index that gives the order statistic result.

3 Fuzzy Min-Max Estimation

To illustrate adjustment of fuzzy membership functions by steepest descent, consider the fuzzy estimation problem
illustrated in Fig. 1. We wish to generate an estimatef (x1;x2) of a target functiont(x1;x2) using a set of fuzzyIF
... THEN rules. Here we have:

t(x1;x2) = sin(πx1)cos(πx2) (5)

The rule table (Table 1) is generated by partioning the domain oft(x1;x2), f(x1;x2) j x1 2 [�1;1];x22 [�1;1]g
into 64 (8� 8) regions and assigning a fuzzy membership function to each region in accordance to the values of
t(x1;x2) in that region. For instance ift(x1;x2) takes on values close to 1 in certain regions, then the membership
function used for those regions of the domain will be “Positive High” (PH). Initial membership functions forf
are thus formed in this way. The values ofx1 andx2 are fuzzified in a similar manner. The initial membership
functions chosen are Gaussian and are shown in Figure 2 forx1;x2 and f (x1;x2).

To illustrate, consider the fuzzyIF ... THEN rules with a positive medium (PM) consequent. These are
highlighted in Table 1. Reading from left to right from the top of the table, they are:



IF x1 is NHAND x2 is NH

OR

IF x1 is PHAND x2 is NH

OR

IF x1 is NMAND x2 is NM

OR

...

IF x1 is PZ AND x2 is PH

THEN

f (x1;x2) is PM.

Similar rules exist for the other five categories off .

x1 NH NM NS NZ PZ PS PM PH
x2

NH PM PS NS NM NM NS PS PM
NM PH PM NM NH NH NM PM PH
NS PH PM NM NH NH NM PM PH
NZ PM PS NS NM NM NS PS PM
PZ NM NS PS PM PM PS NS NM
PS NH NM PM PH PH PM NM NH
PM NH NM PM PH PH PM NM NH
PH NM NS PS PM PM PS NS NM

Table 1: Decision Table for fuzzy estimation.
Table contents represent the estimated fuzzy
value of the outputf for a given choice of
values forx1 & x2. Rules with a consequent of
Positive medium (PM) are highlighted.

3.1 Feedforward Procedure

For purposes of analysis, let the membership functions for the variablex1 be denoted byµi
1; i = 1;2; � � �N, those

for the variablex2 by µj
2; j = 1;2; � � �M, and those for the output variablef by µk

3; k = 1;2; � � �K.
For a given output membership functionµk

3, the rules, as shown in Table 1, are of the form:

If x1 is µi
1 andx2 is µj

2 OR If x1 is µl
1 andx2 is µm

2 OR � � �

Then ... f is µk
3.



Let us define a setSk as follows:

Sk = fl ;m j µl
1 andµm

2 are antecedents of a rule with consequentµk
3g (6)

The familiar operations to arrive at the output are as follows.

1. Perform a pairwise fuzzy intersection (e.g. minimum or outer product) on each of the membership values
of x1 andx2 in µl

1 andµm
2 for every rule with consequentµk

3, forming activation valuesζ:

ζk
lm = min

l ;m2Sk

(µl
1(x1);µ

m
2 (x2)) (7)

2. Collect activation values for like output membership functions and perform a fuzzy union (e.g.maximum).

wk = max
l ;m2Sk

(ζk
lm) (8)

3. These values are defuzzified to generate the output estimated value,f (x1;x2), by finding the centroid of the
composite membership functionµ:

µ =
K

∑
k=1

wkµ
k
3 (9)

f (x1;x2) =
∑K

k=1wkckAk

∑K
k=1wkAk

(10)

where

Ak =

Z
µk

3(x) dx; (11)

ck =

R
xµk

3(x) dxR
µk

3(x) dx
(12)

Ak andck are, respectively, the area and centroid of the consequent membership functionµk
3.

Backpropagation Adjustment

Expert heuristics are typically used to specify the membership functions for the input (x1;x2) and output (f ).
These functions can be adapted or fine tuned using supervised learning. The steps to adapt the input membership
functions are as follows.

We first form the error function by taking the squared difference between the estimated outputf , and the
desired target valuet:

E =
1
2
( f � t)2 (13)

Assume now that we wish to update parameters of a Gaussian membership function that appears either in
the antecedent or the consequent of a rule. Denote these parameters bymi

l [q] and the corresponding membership



function byµi
l . In our example, forl = 1;2, the indexi = 1;2; � � �8 and forl = 3, the indexi = 1;2; � � �6; q =1,2,

and:

µi
l (x) = exp

�
(x�mi

l [1])
2

2(mi
l [2])

2

�
(14)

The steepest descent update rule is:

mi
l [q](= mi

l [q]�α
∂E

∂mi
l [q]

: (15)

We have, for the general case:

∂E

∂mi
l [q]

=
∂E
∂ f

K

∑
k=1

�
∂ f
∂wk

∂wk

∂µi
l

�
∂µi

l

∂mi
l [q]

(16)

This in turn can be written in the following way (see Eqs. 7 and 8):

∂E

∂mi
l [q]

=
∂E
∂ f

K

∑
k=1

 
∂ f
∂wk

∑
l ;m2Sk

 
∂wk

∂ζk
lm

∂ζk
lm

∂µi
l

!!
∂µi

l

∂mi
l [q]

(17)

From Eqs. 2 and 4, and referring to Eqs. 7 and 8 we obtain:

∂wk

∂ζk
lm

= δ[wk�ζk
lm] (18)

∂ζk
lm

∂µi
l

= δ[ζk
lm�µi

l ] (19)

whereδ[�], the Kronecker delta function, is equal to one for zero arguments and is zero otherwise.
Substituting the above two equations in Eq. 17, we obtain:

∂E

∂mi
l [q]

=
∂E
∂ f

K

∑
k=1

 
∂ f (wk)

∂wk
∑

l ;m2Sk

�
δ[wk�ζk

lm]δ[ζk
lm�µi

l ]
�! ∂µi

l

∂mi
l [q]

(20)

It is clear that the two Kronecker delta functions now serve to isolate the membership function whose parameter
is being updated. Other membership functions that are not used in the decision process are not adapted. Eq. 20
finally simplifies to:

∂E

∂mi
l [q]

=
∂E
∂ f

∂ f (µi
l (xj))

∂wk

∂µi
l

∂mi
l [q]

(21)

where

∂ f
∂wk

=
Ak ∑K

p=1wpAp(ck�cp)

(∑K
p=1wpcp)2

(22)

In generalµi
l is a function of many parametersmi

l [q]; q= 1;2; � � �. For our estimation problem, using Gaussian
membership functions, there are two parameters to adapt. These are the mean (mi

l [1]), and the variance (mi
l [2]).

We thus have:

∂µi
l

∂mi
l [1]

= µi
l
(x�mi

l [1])

(mi
l [2])

2
(23)

∂µi
l

∂mi
l [2]

= µi
l
(x�mi

l [1])
2

(mi
l [2])

3
(24)



4 Results

We present here results of the application of this technique to the estimation problem discussed in section 3. Fig.
3 illustrates the input and output membership functions after adaptation and Fig. 4 shows the (much improved)
estimation result.
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Figure 1: A fuzzy estimation problem: a) 3-D plot and b) contour plot, of the
signal to be estimated:t(x1;x2) = sin(πx1)cos(πx2) over the domainf(x1;x2) j
x1 2 [�1;1];x2 2 [�1;1]g.
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Figure 2: Initial membership functions for a)x1, x2 and b) f (x1;x2). Here NH�
Negative High, NM� Negative Medium, NS� Negative Small, NZ� Negative
Zero, PZ� Positive Zero,� � �
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Figure 3: Final membership functions for a) x1 b) x2 and c) f(x1; x2). Here NH � Negative High, NM
� Negative Medium, NS � Negative Small, NZ � Negative Zero, PZ � Positive Zero, � � �
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Figure 4: Result of fuzzy estimation: a) 3-D plot and b) contour plot, of the estimated signal: f(x1; x2) =
sin(�x1) cos(�x2) over the domain f(x1; x2)jx1 2 [�1; 1]; x2 2 [�1; 1]g.


