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Abstract – We present an outline of reconfigurable processor 
technologies and design methods with emphasis on an object-
oriented approach, and both full and partial dynamic 
reconfiguration. A specific broadly applicable architecture for 
implementing a software reconfigurable network processor for 
wireless communication applications is presented; a prototype 
of which is currently operating in the laboratory. This 
architecture, its associated object oriented design methods, and 
partial reconfiguration techniques enable rapid-prototyping 
and rapid implementations of communications and navigation 
signal processing functions; provide long-life communications 
infrastructure; and result in dynamic operation within 
networks with heterogeneous nodes, as well as compatibility 
with other networks. This work builds upon numerous 
advances in commercial industry as well as military software 
radio developments to space-based radios and network 
processing. The development of such radios and the network 
processor presented here require defining the correct 
combination of processing methods (“objects”) and developing 
appropriate dynamic reconfiguration techniques as a function 
of system goals and operating parameters.  

I. INTRODUCTION 

     Processors in use in the telecom industry, especially 
within the rapidly growing wireless communication sector, 
are increasingly called to task on a diversity of applications, 
and faced with ever-stringent operational constraints. Many 
potential applications for these processors often cannot be 
anticipated at design time. Moreover, the value of adapting to 
new requirements and continuing cost-efficient, high-
performance operation within such dynamic networks is 
extremely high, driving the need for reconfigurability [1-5].  

The reconfigurable processor architecture is typically a 
composite of generic microprocessors, field programmable 
gate arrays (FPGAs), digital signal processors (DSPs), as 
well as traditional digital and mixed-signal applications 
specific integrated circuits (ASICs) and discrete analog-
circuits. It is currently determined by experienced design 
engineers who decide upon and consider numerous tradeoffs 
involving, among others, complexity, cost, development 
time, mass, size, flexibility, power consumption, and 
reliability in order to achieve target system requirements and 
performance metrics. Given the variety of processors and 
development platforms available in the commercial market, 
and the increasing complexity of problem solutions, these 
judicious decisions are generally extraordinarily complex 

                                                 
  The work described in this publication was carried out as part of a task 
funded by the Technology and Applications Program (TAP) at the Jet 
Propulsion Laboratory, California Institute of Technology, under a contract 
with the National Aeronautics and Space Administration. 

 

while at the same time being sensitive and potentially error 
prone and costly. 
 To address these issues, we present design methods 
that facilitate flexibility (leading to prolonged processor 
lives), and dynamic reconfigurability, along with a generic 
reconfigurable processor architecture. Dynamic partial 
reconfiguration of the network processor will greatly 
increase the value of the processor within the network. For 
instance the processor’s ability to perform a very large 
number of temporally separated (time-multiplexed) 
functions will dramatically increase network elasticity and 
compatibility (see Fig. 1).   

The paradigms will also empower the design engineer 
with tools required for rapid prototyping and 
implementation of a wide variety of signal processing 
functions.  We focus on a “network processor” as a 
hardware/software object of choice and example within a 
wireless communication network. 

 
Fig. 1. Time multiplexed processor functions. 

II. ARCHITECTURE DEFINITION 

For our purposes we assume that all processing performed 
by the reconfigurable network processor (shown in Fig. 2) 
is entirely digital, and consider the case of conventional 
continuous-time processing; although reconfigurable 
analog systems are also possible [6,7].  

 
Fig. 2. Generic model of a network processor. 

 
Our key considerations are flexibility and computational 
performance for which the primary measure is 
fixed/floating operations per second.  

Figures 3 and 4 represent an abstract depiction of three 
general classes of processor types under consideration for 
our generic architecture definition: ASICs, FPGAs, DSPs, 
and microprocessors [8,9]. 
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Fig. 3. Illustration of flexibility versus power consumption. 
 

 
 
 
 
 
 
 
 
 

Fig. 4. Illustration of processing power versus design time. 
 

FPGAs offer reconfigurability on the bit-level at the cost 
of larger chip integration areas and slower maximum clock 
frequency as compared to custom and semi-custom very 
large scale integrated (VLSI) processors. FPGAs may 
compete with or complement microprocessors. Indeed 
FPGAs are becoming so sophisticated that the majority of 
certain microprocessor and DSP cores may be implemented 
in them. Finally, the key performance advantages of FPGAs 
over software processors are their high computational 
performance and low power consumption. These are 
primarily the result of the very high degrees of parallelism 
and pipelining possible in designs implemented in FPGAs 
[10]. 
 At the same time, FPGAs cannot yet implement the most 
powerful and sophisticated microprocessors. In addition the 
large quantity of developed software and variety of 
development tools available for such processors offers 
advantages in using them rather than FPGAs.  
 The generic reconfigurable processor architecture 
presented below is motivated by these factors, both positive 
and negative. The reconfiguration of the architecture in our 
design has to be performed by a controlling agent which 
should reside in the software processor given the current 
state-of-the art FPGA design tools [10]. This software 
processor also needs computational power to perform other 
functions (e.g. transmit, receive), and applications that find a 
logical implementation in software (e.g. data compression).  
 Accordingly for the network processor outlined above, 
we have chosen an architecture based on an FPGA and a 
reduced instruction set computer (RISC) microprocessor that 
acts as the software processor. The primary application in 

mind for the network processor is in satellite networks or 
dense ad hoc wireless sensor networks. Again, the primary 
motivations have continued to be flexibility and 
computational power; if less processing power or less 
flexibility were desired a different architecture would be 
chosen. Figure 5 illustrates a conceptual framework of the 
design. 
 

Fig. 5. Network layers implemented in a reconfigurable 
processor. Note the degree of overlap of various layers 
within the domain of either the software processor, or the 
reconfigurable hardware. 

 Hybrid software and reconfigurable hardware design, 
as well as reconfiguration of network layers in the 
processor, calls for a unified object-oriented design 
paradigm encompassing hardware, software, and the 
interface between the two. The processor architecture in 
Fig. 5 was developed to allow the algorithms and signal 
processing of various layers to be accomplished in a 
logical way: with some functions logically being 
implemented in software and some logically in hardware. 
The goal is to develop design tools that facilitate this 
logical placement of processing. 

The prototype of Fig. 5 assumes a 1 million gate Xilinx 
FPGA and a 700 MHz PowerPC processor. Note that the 
reconfiguration of the software and hardware processors is 
defined by software control. 

III. OBJECT ORIENTED DESIGN AND RECONFIGURATION 

The first step in implementing a system design in the 
architecture shown in Fig. 5 is to represent it in an 
implementation-independent form. This is done to provide 
a context in which to evaluate various implementation 
choices against numerous design constraints. It is crucial 
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that a well-defined route exist from the implementation-
independent model to the chosen implementation technology. 
Additionally it is essential that subsets of the design 
(“objects”), either hardware, software or a combination – for 
which partial near real-time reconfiguration is desired – be 
logically and temporally separable from other parts of the 
design without interrupting the flow of data processing. 
 There has been little work on broadly applicable design 
methods, which allow the design engineer to define such 
objects in the context of a reconfigurable processor. A 
primary problem is that although both hardware and software 
development and implementation are generally well 
understood as logically separate entities or classes of objects, 
there are relatively few techniques that apply to the design of 
systems as a whole, and particularly for the instance when 
partial reconfiguration with time constraints is desired. 
 We model the implementation “code” as being in one of 
three general classes: 

1. Software: signal processing, networking, data 
processing, applications, etc; objects in C++ for a 
microprocessor. 

2. Hardware: firmware, hardware description 
language (HDL) code, e.g., Verilog, VHDL, or even 
C++ for FPGA design. 

3. Interface: software interface drivers and/or HDL 
decode/encode interface modules. 

 
A. Software Objects 

Objects in a software class are identical to those of traditional 
object oriented programming. Coad and Yourdon [11-13] 
present a set of quality design principles based on the 
following parameters, that result in better, “maintainable” 
object oriented software designs: 

• Coupling: Interaction coupling between classes should 
be kept low by reducing the complexity of message 
connection and decreasing the number of messages that 
can be sent and received by an individual object. 
Inheritance coupling between classes should be high. 

• Cohesion: A service in a class should carry out one and 
only one function. The attributes and services should be 
highly cohesive. A specialization should actually portray 
a sensible specialization.  

• Clarity of design: A consistent vocabulary should be 
used. The names in the model should closely correspond 
to the names of the concepts being modeled. The 
responsibilities of a class should be clearly defined and 
adhered to. The responsibilities of any class should be 
limited in scope. 

• Generalization-Specialization depth: It is important not 
to create specialization classes, which are conceptually 
not a real specialization, e.g. created for the sake of 
reuse.  

• Keeping objects and classes simple: Excessive 
numbers of attributes in a class should be avoided – an 
average of one or two attributes for each service in a 
class is usually all that is required.  

 
B. Hardware Objects 

Applying concepts of object-oriented (OO) design to 
hardware is not new [14]. As integrated circuits continue 
to increase in complexity, higher levels of abstraction shift 
from convenience to necessity. Complex circuits increase 
the demand for the reuse of objects. The reconfigurable 
hardware class is defined by its attributes and methods. 
The reconfigurable hard object, an instance of this class, 
will specify the state (values for these attributes) and 
behavior (set of methods to be applied). 
 Traditional HDL (i.e. verilog, VHDL) consists of 
structural or register-transfer level (RTL) and behavioral 
constructs. However, many behavioral constructs are not 
synthesizable and are impractical to use for algorithmic 
design specification or verification. Object oriented 
languages like C++, Java, etc. have been used to specify a 
system at a higher level of abstraction thus increasing 
productivity, readability, and reusability.  
 Polymorphism is a major object oriented concept that 
still poses a problem during synthesis of hardware. 
Polymorphism allows an entity (variable, function, object) 
to take a variety of representations. Polymorphism requires 
that the control flow of an object oriented specification not 
be explicitly given but results from the values of variables 
while executing the program. The main synthesis problem 
consists of the construction of a control flow graph. Refer 
to [15] for an example solution. 
 Given the current stage of many synthesis tools, it is 
convenient to rely on traditional HDL (verilog, VHDL). 
However, algorithmic design and verification can be done 
with higher level object oriented design tools or languages 
like C++, Java, Matlab, Signal Processing WorkSystem 
(SPW). However this requires an intermediate step of 
converting the design to HDL for the synthesis tools. 
Various C++ and Java tools, Matlab and SPW already 
have this capabiltiy. 
 Dynamic aspects of OO hardware design are those 
such as inter-object communication, object creation, 
adaptation, and destruction. These are distinctly different 
from corresponding concepts in software OO design. For 
instance communications between hardware objects are 
defined more in terms of lower-level mechanisms, rather 
than high-level primitives. In a similar fashion dynamic 
creation and use of hardware objects within an FPGA 
(through computing, communication, scheduling, 
destruction, ...) frequently happens in a parallel fashion, 
and must be managed concurrently too. This is unlike the 
software OO model, and more akin to multitasking within 
an operating system. Accordingly the FPGA is configured 



and managed by additional system software (controlling 
agent) running on one of the system processors. The 
controlling agent also has the task of facilitating 
communications between FPGA-based hardware and 
software objects [16]. 
 
C.  Interface Objects 

The interface class is really a combination of software and 
hardware processing (classes). Rather than include an entire 
signal processing module however, we minimize the logical 
extent of the module. This is because interface objects exist 
primarily to solve multirate data input/output timing issues 
and data format conversions that exist on the boundary 
between hardware and software. An example object could be 
a data buffer (either in hardware or software) between 
hardware output software input. 
 
D. Partial Reconfiguration 

Software programming and FPGA reconfiguration can occur 
in three different ways. A static download refers to a 
complete reconfiguration or mode of operation which is 
determined by the system itself.  A pseudo-static download 
refers to the use of over-the-air download to completely 
reconfigure the system. The controlling agent now 
determines the mode of operation [3]. 
 The third option, dynamic reconfiguration, has the most 
flexibility, allowing over-the-air partial reconfiguration to 
occur during a communications link or other signal 
processing task. There are in turn two forms of dynamic 
reconfiguration. The first involves dynamically reconfiguring 
objects not involved with the signal processing task. The 
second dynamically reconfigures objects that are involved 
with the current running signal processing task.  
 Hardware and software objects must be designed and 
implemented with dynamic partial reconfiguration in mind. 
Partial reconfiguration of objects will benefit greatly from a 
streamlined, object oriented, hierarchical design. Strong 
emphasis should be placed on minimizing object coupling. 

By way of an example of the first type of dynamic 
reconfiguration, consider a multi channel receiver with 4 
independent BPSK receivers in an FPGA. In order to 
partially reconfigure channel one from a BPSK to a QPSK 
receiver while leaving the other channels intact, channel one 
must be an independent module with no coupling with the 
rest of the channels. However, objects or modules within the 
channel one module will have some degree of coupling. 
However, since each module has only one function, 
interchanging modules should be fairly simple. For example, 
2nd order loop filter could easily be reconfigured to a 1st order 
filter, assuming the inputs and outputs are the same 
(resolution, rate, etc.). 

The second form of dynamic partial reconfiguration is 
more difficult to accomplish. The reconfiguring controlling 
agent must now generate and transmit a signal to the object 
to be reconfigured letting the object know that it needs be 
reconfigured. That object may then have to buffer data 
(both input data and data it is currently processing) before 
sending a signal to the controlling agent “ready to 
reconfigure.” After receiving this signal the controlling 
agent then initiates the configuration of that object. The 
reconfiguration time of the FPGA must be known for this 
buffering scheme to work. 

 
IV. DYNAMIC NETWORK RECONFIGURATION 

Currently the design tools to accomplish dynamic partial 
reconfiguration on FPGAs are in relatively early stages of 
development. However, there can be little doubt that given 
the current rate of FPGA tool and device development 
these problems will be solved, and the object-oriented 
design and reconfiguration methods outlined earlier will 
find practical and powerful use in dynamic partial 
reconfiguration of network processors such as that 
illustrated in Fig. 5.  
 Dynamic configuration of network processors for 
wireless communications is very compelling in order to 
address: 

1. Dynamic network conditions such as weather, 
multipath and fading introduced by transmitter or 
receiver motion. 

2. Operation within networks with heterogeneous 
nodes and compatibility with other networks. 

 Figure 6 illustrates a simple example of dynamic 
reconfiguration necessitated by weather. Reconfiguration 
is desirable with minimal (ideally zero) interruption in the 
data link. One or more of the network layers may be 
reconfigured dynamically. In this instance, the object-
oriented design and configuration of the processor is 
crucial for enabling minimal transmission interruption. As 
the channel starts to degrade in Fig. 6 objects in the 
network layers, implemented as depicted in Fig. 5, may be 
reconfigured according to the level of degradation.  

The priorities with which objects are reconfigured for a 
given network may be predetermined and stored by the 
reconfiguration agent (in this case residing in the software 
controlling agent) or may reside in the protocol stack itself. 
The latter notion gives rise to the notion of network 
protocols for dynamically reconfiguring network 
processors which currently do not exist; however the 
development of such protocols and their use in dynamic 
networks of the future will likely be required to make the 
most efficient use of the reconfigurable network processor 
technologies described here.       

 



 
Fig. 6. An example of a dynamic, network driven 
reconfiguration: protocols of the future may include built-in 
dynamic processor reconfiguration features. 
 

V. LABORATORY PROTOTYPE 

A prototype of the reconfigurable processor illustrated in Fig. 
5 is currently operating in the laboratory. To date the 
physical (BPSK radio), data link, and transport layers have 
been implemented and demonstrated. The processor has been 
demonstrated in a two-way communications link with data 
rates as high as 1 Mbps per channel.  Examples of NASA 
science missions planning to use the reconfigurable 
architecture of Fig. 5 include the Starlight mission for 
Autonomous Formation Flyer in 2006; and the Neige 
experiments on Mars premier orbiter in 2005. The 
reconfigurable processor may also be appropriate for future 
mission to Mars as well. 

VI. CONCLUSION 

We have provided an overview of software reconfigurable 
processor technologies and the object-oriented design 
methods that facilitate efficient reconfiguration, and in 
particular dynamic partial reconfiguration of these processor 
technologies. A specific reconfigurable network processor 
was developed as a manifestation of these technologies and a 
prototype is currently operating in the laboratory at JPL.  
Such processors and the object-oriented design 
methodologies presented here greatly increase the diversity 
of applications of network processors as compared to 
traditional processor technologies and can provide long-life 
satellite communications and dynamic wireless network 
infrastructure support. 

Dynamic reconfiguration enables a multi-mission role for 
the processor, greatly increasing its value of. Finally, it 
appears logical that network-driven dynamic reconfiguration 
of the future will reside in the network protocols themselves; 
this appears to be an interesting area of future research and 
development.      
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