
Object-Oriented Reconfigurable Processing for Wireless Networks

Andrew A. Gray, Clement Lee, Payman Arabshahi, Jeffrey Srinivasan
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, MS 238-343, Pasadena, CA 91101 USA

Abstract – We present an outline of reconfigurable processor
technologies and design methods with emphasis on an object-
oriented approach, and both full and partial dynamic
reconfiguration. A specific broadly applicable architecture for
implementing a software reconfigurable network processor for
wireless communication applications is presented; a prototype
of which is currently operating in the laboratory. This
architecture, its associated object oriented design methods, and
partial reconfiguration techniques enable rapid-prototyping
and rapid implementations of communications and navigation
signal processing functions; provide long-life communications
infrastructure; and result in dynamic operation within
networks with heterogeneous nodes, as well as compatibility
with other networks. This work builds upon numerous
advances in commercial industry as well as military software
radio developments to space-based radios and network
processing. The development of such radios and the network
processor presented here require defining the correct
combination of processing methods (“objects”) and developing
appropriate dynamic reconfiguration techniques as a function
of system goals and operating parameters.

I. INTRODUCTION

 Processors in use in the telecom industry, especially
within the rapidly growing wireless communication sector,
are increasingly called to task on a diversity of applications,
and faced with ever-stringent operational constraints. Many
potential applications for these processors often cannot be
anticipated at design time. Moreover, the value of adapting to
new requirements and continuing cost-efficient, high-
performance operation within such dynamic networks is
extremely high, driving the need for reconfigurability [1-5].

The reconfigurable processor architecture is typically a
composite of generic microprocessors, field programmable
gate arrays (FPGAs), digital signal processors (DSPs), as
well as traditional digital and mixed-signal applications
specific integrated circuits (ASICs) and discrete analog-
circuits. It is currently determined by experienced design
engineers who decide upon and consider numerous tradeoffs
involving, among others, complexity, cost, development
time, mass, size, flexibility, power consumption, and
reliability in order to achieve target system requirements and
performance metrics. Given the variety of processors and
development platforms available in the commercial market,
and the increasing complexity of problem solutions, these
judicious decisions are generally extraordinarily complex

 The work described in this publication was carried out as part of a task
funded by the Technology and Applications Program (TAP) at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

while at the same time being sensitive and potentially error
prone and costly.
 To address these issues, we present design methods
that facilitate flexibility (leading to prolonged processor
lives), and dynamic reconfigurability, along with a generic
reconfigurable processor architecture. Dynamic partial
reconfiguration of the network processor will greatly
increase the value of the processor within the network. For
instance the processor’s ability to perform a very large
number of temporally separated (time-multiplexed)
functions will dramatically increase network elasticity and
compatibility (see Fig. 1).

The paradigms will also empower the design engineer
with tools required for rapid prototyping and
implementation of a wide variety of signal processing
functions. We focus on a “network processor” as a
hardware/software object of choice and example within a
wireless communication network.

Fig. 1. Time multiplexed processor functions.

II. ARCHITECTURE DEFINITION

For our purposes we assume that all processing performed
by the reconfigurable network processor (shown in Fig. 2)
is entirely digital, and consider the case of conventional
continuous-time processing; although reconfigurable
analog systems are also possible [6,7].

Fig. 2. Generic model of a network processor.

Our key considerations are flexibility and computational
performance for which the primary measure is
fixed/floating operations per second.

Figures 3 and 4 represent an abstract depiction of three
general classes of processor types under consideration for
our generic architecture definition: ASICs, FPGAs, DSPs,
and microprocessors [8,9].

 Network Processor

Time 1

Function 1
Receiver

Chain
2

Function 2
Transmitter

Chain
3

Function 3
encryption/

compression
4

Function 1
Receiver

Chain

RF Processing
(ASICs, Discrete

components)
AD/DA

Conversion
Reconfigurable

Network
Processor

Fig. 3. Illustration of flexibility versus power consumption.

Fig. 4. Illustration of processing power versus design time.

FPGAs offer reconfigurability on the bit-level at the cost
of larger chip integration areas and slower maximum clock
frequency as compared to custom and semi-custom very
large scale integrated (VLSI) processors. FPGAs may
compete with or complement microprocessors. Indeed
FPGAs are becoming so sophisticated that the majority of
certain microprocessor and DSP cores may be implemented
in them. Finally, the key performance advantages of FPGAs
over software processors are their high computational
performance and low power consumption. These are
primarily the result of the very high degrees of parallelism
and pipelining possible in designs implemented in FPGAs
[10].
 At the same time, FPGAs cannot yet implement the most
powerful and sophisticated microprocessors. In addition the
large quantity of developed software and variety of
development tools available for such processors offers
advantages in using them rather than FPGAs.
 The generic reconfigurable processor architecture
presented below is motivated by these factors, both positive
and negative. The reconfiguration of the architecture in our
design has to be performed by a controlling agent which
should reside in the software processor given the current
state-of-the art FPGA design tools [10]. This software
processor also needs computational power to perform other
functions (e.g. transmit, receive), and applications that find a
logical implementation in software (e.g. data compression).
 Accordingly for the network processor outlined above,
we have chosen an architecture based on an FPGA and a
reduced instruction set computer (RISC) microprocessor that
acts as the software processor. The primary application in

mind for the network processor is in satellite networks or
dense ad hoc wireless sensor networks. Again, the primary
motivations have continued to be flexibility and
computational power; if less processing power or less
flexibility were desired a different architecture would be
chosen. Figure 5 illustrates a conceptual framework of the
design.

Fig. 5. Network layers implemented in a reconfigurable
processor. Note the degree of overlap of various layers
within the domain of either the software processor, or the
reconfigurable hardware.

 Hybrid software and reconfigurable hardware design,
as well as reconfiguration of network layers in the
processor, calls for a unified object-oriented design
paradigm encompassing hardware, software, and the
interface between the two. The processor architecture in
Fig. 5 was developed to allow the algorithms and signal
processing of various layers to be accomplished in a
logical way: with some functions logically being
implemented in software and some logically in hardware.
The goal is to develop design tools that facilitate this
logical placement of processing.

The prototype of Fig. 5 assumes a 1 million gate Xilinx
FPGA and a 700 MHz PowerPC processor. Note that the
reconfiguration of the software and hardware processors is
defined by software control.

III. OBJECT ORIENTED DESIGN AND RECONFIGURATION

The first step in implementing a system design in the
architecture shown in Fig. 5 is to represent it in an
implementation-independent form. This is done to provide
a context in which to evaluate various implementation
choices against numerous design constraints. It is crucial

Flexibility

Power Consumption

ASIC

FPGA

Microprocessor

DSP

Design and Implementation Time

Microprocessor

FPGA

ASIC

Operations
per

Second

DSP

Software Processor
(G3 Power PC)

Physical Layer
(Software-Defined Radio)

Data Link Layer

Network Layer

Application Layer

Reconfigurable Hardware
(Xilinx FPGA)

Processing Implemented in
Power Efficient

Reconfigurable Hardware

Processing Implemented in
Flexible Software

Configure
Software and

Hardware
Processing

Transport Layer

that a well-defined route exist from the implementation-
independent model to the chosen implementation technology.
Additionally it is essential that subsets of the design
(“objects”), either hardware, software or a combination – for
which partial near real-time reconfiguration is desired – be
logically and temporally separable from other parts of the
design without interrupting the flow of data processing.
 There has been little work on broadly applicable design
methods, which allow the design engineer to define such
objects in the context of a reconfigurable processor. A
primary problem is that although both hardware and software
development and implementation are generally well
understood as logically separate entities or classes of objects,
there are relatively few techniques that apply to the design of
systems as a whole, and particularly for the instance when
partial reconfiguration with time constraints is desired.
 We model the implementation “code” as being in one of
three general classes:

1. Software: signal processing, networking, data
processing, applications, etc; objects in C++ for a
microprocessor.

2. Hardware: firmware, hardware description
language (HDL) code, e.g., Verilog, VHDL, or even
C++ for FPGA design.

3. Interface: software interface drivers and/or HDL
decode/encode interface modules.

A. Software Objects

Objects in a software class are identical to those of traditional
object oriented programming. Coad and Yourdon [11-13]
present a set of quality design principles based on the
following parameters, that result in better, “maintainable”
object oriented software designs:

• Coupling: Interaction coupling between classes should
be kept low by reducing the complexity of message
connection and decreasing the number of messages that
can be sent and received by an individual object.
Inheritance coupling between classes should be high.

• Cohesion: A service in a class should carry out one and
only one function. The attributes and services should be
highly cohesive. A specialization should actually portray
a sensible specialization.

• Clarity of design: A consistent vocabulary should be
used. The names in the model should closely correspond
to the names of the concepts being modeled. The
responsibilities of a class should be clearly defined and
adhered to. The responsibilities of any class should be
limited in scope.

• Generalization-Specialization depth: It is important not
to create specialization classes, which are conceptually
not a real specialization, e.g. created for the sake of
reuse.

• Keeping objects and classes simple: Excessive
numbers of attributes in a class should be avoided – an
average of one or two attributes for each service in a
class is usually all that is required.

B. Hardware Objects

Applying concepts of object-oriented (OO) design to
hardware is not new [14]. As integrated circuits continue
to increase in complexity, higher levels of abstraction shift
from convenience to necessity. Complex circuits increase
the demand for the reuse of objects. The reconfigurable
hardware class is defined by its attributes and methods.
The reconfigurable hard object, an instance of this class,
will specify the state (values for these attributes) and
behavior (set of methods to be applied).
 Traditional HDL (i.e. verilog, VHDL) consists of
structural or register-transfer level (RTL) and behavioral
constructs. However, many behavioral constructs are not
synthesizable and are impractical to use for algorithmic
design specification or verification. Object oriented
languages like C++, Java, etc. have been used to specify a
system at a higher level of abstraction thus increasing
productivity, readability, and reusability.
 Polymorphism is a major object oriented concept that
still poses a problem during synthesis of hardware.
Polymorphism allows an entity (variable, function, object)
to take a variety of representations. Polymorphism requires
that the control flow of an object oriented specification not
be explicitly given but results from the values of variables
while executing the program. The main synthesis problem
consists of the construction of a control flow graph. Refer
to [15] for an example solution.
 Given the current stage of many synthesis tools, it is
convenient to rely on traditional HDL (verilog, VHDL).
However, algorithmic design and verification can be done
with higher level object oriented design tools or languages
like C++, Java, Matlab, Signal Processing WorkSystem
(SPW). However this requires an intermediate step of
converting the design to HDL for the synthesis tools.
Various C++ and Java tools, Matlab and SPW already
have this capabiltiy.
 Dynamic aspects of OO hardware design are those
such as inter-object communication, object creation,
adaptation, and destruction. These are distinctly different
from corresponding concepts in software OO design. For
instance communications between hardware objects are
defined more in terms of lower-level mechanisms, rather
than high-level primitives. In a similar fashion dynamic
creation and use of hardware objects within an FPGA
(through computing, communication, scheduling,
destruction, ...) frequently happens in a parallel fashion,
and must be managed concurrently too. This is unlike the
software OO model, and more akin to multitasking within
an operating system. Accordingly the FPGA is configured

and managed by additional system software (controlling
agent) running on one of the system processors. The
controlling agent also has the task of facilitating
communications between FPGA-based hardware and
software objects [16].

C. Interface Objects

The interface class is really a combination of software and
hardware processing (classes). Rather than include an entire
signal processing module however, we minimize the logical
extent of the module. This is because interface objects exist
primarily to solve multirate data input/output timing issues
and data format conversions that exist on the boundary
between hardware and software. An example object could be
a data buffer (either in hardware or software) between
hardware output software input.

D. Partial Reconfiguration

Software programming and FPGA reconfiguration can occur
in three different ways. A static download refers to a
complete reconfiguration or mode of operation which is
determined by the system itself. A pseudo-static download
refers to the use of over-the-air download to completely
reconfigure the system. The controlling agent now
determines the mode of operation [3].
 The third option, dynamic reconfiguration, has the most
flexibility, allowing over-the-air partial reconfiguration to
occur during a communications link or other signal
processing task. There are in turn two forms of dynamic
reconfiguration. The first involves dynamically reconfiguring
objects not involved with the signal processing task. The
second dynamically reconfigures objects that are involved
with the current running signal processing task.
 Hardware and software objects must be designed and
implemented with dynamic partial reconfiguration in mind.
Partial reconfiguration of objects will benefit greatly from a
streamlined, object oriented, hierarchical design. Strong
emphasis should be placed on minimizing object coupling.

By way of an example of the first type of dynamic
reconfiguration, consider a multi channel receiver with 4
independent BPSK receivers in an FPGA. In order to
partially reconfigure channel one from a BPSK to a QPSK
receiver while leaving the other channels intact, channel one
must be an independent module with no coupling with the
rest of the channels. However, objects or modules within the
channel one module will have some degree of coupling.
However, since each module has only one function,
interchanging modules should be fairly simple. For example,
2nd order loop filter could easily be reconfigured to a 1st order
filter, assuming the inputs and outputs are the same
(resolution, rate, etc.).

The second form of dynamic partial reconfiguration is
more difficult to accomplish. The reconfiguring controlling
agent must now generate and transmit a signal to the object
to be reconfigured letting the object know that it needs be
reconfigured. That object may then have to buffer data
(both input data and data it is currently processing) before
sending a signal to the controlling agent “ready to
reconfigure.” After receiving this signal the controlling
agent then initiates the configuration of that object. The
reconfiguration time of the FPGA must be known for this
buffering scheme to work.

IV. DYNAMIC NETWORK RECONFIGURATION

Currently the design tools to accomplish dynamic partial
reconfiguration on FPGAs are in relatively early stages of
development. However, there can be little doubt that given
the current rate of FPGA tool and device development
these problems will be solved, and the object-oriented
design and reconfiguration methods outlined earlier will
find practical and powerful use in dynamic partial
reconfiguration of network processors such as that
illustrated in Fig. 5.
 Dynamic configuration of network processors for
wireless communications is very compelling in order to
address:

1. Dynamic network conditions such as weather,
multipath and fading introduced by transmitter or
receiver motion.

2. Operation within networks with heterogeneous
nodes and compatibility with other networks.

 Figure 6 illustrates a simple example of dynamic
reconfiguration necessitated by weather. Reconfiguration
is desirable with minimal (ideally zero) interruption in the
data link. One or more of the network layers may be
reconfigured dynamically. In this instance, the object-
oriented design and configuration of the processor is
crucial for enabling minimal transmission interruption. As
the channel starts to degrade in Fig. 6 objects in the
network layers, implemented as depicted in Fig. 5, may be
reconfigured according to the level of degradation.

The priorities with which objects are reconfigured for a
given network may be predetermined and stored by the
reconfiguration agent (in this case residing in the software
controlling agent) or may reside in the protocol stack itself.
The latter notion gives rise to the notion of network
protocols for dynamically reconfiguring network
processors which currently do not exist; however the
development of such protocols and their use in dynamic
networks of the future will likely be required to make the
most efficient use of the reconfigurable network processor
technologies described here.

Fig. 6. An example of a dynamic, network driven
reconfiguration: protocols of the future may include built-in
dynamic processor reconfiguration features.

V. LABORATORY PROTOTYPE

A prototype of the reconfigurable processor illustrated in Fig.
5 is currently operating in the laboratory. To date the
physical (BPSK radio), data link, and transport layers have
been implemented and demonstrated. The processor has been
demonstrated in a two-way communications link with data
rates as high as 1 Mbps per channel. Examples of NASA
science missions planning to use the reconfigurable
architecture of Fig. 5 include the Starlight mission for
Autonomous Formation Flyer in 2006; and the Neige
experiments on Mars premier orbiter in 2005. The
reconfigurable processor may also be appropriate for future
mission to Mars as well.

VI. CONCLUSION

We have provided an overview of software reconfigurable
processor technologies and the object-oriented design
methods that facilitate efficient reconfiguration, and in
particular dynamic partial reconfiguration of these processor
technologies. A specific reconfigurable network processor
was developed as a manifestation of these technologies and a
prototype is currently operating in the laboratory at JPL.
Such processors and the object-oriented design
methodologies presented here greatly increase the diversity
of applications of network processors as compared to
traditional processor technologies and can provide long-life
satellite communications and dynamic wireless network
infrastructure support.

Dynamic reconfiguration enables a multi-mission role for
the processor, greatly increasing its value of. Finally, it
appears logical that network-driven dynamic reconfiguration
of the future will reside in the network protocols themselves;
this appears to be an interesting area of future research and
development.

REFERENCES

[1] N.J. Drew and M.M. Dillinger, “Evolution toward
reconfigurable user equipment,” IEEE Communications
Magazine, vol. 39, no. 2, Feb. 2001.
[2] E. Buracchini, “The software radio concept,” IEEE
Communications Magazine,” vol. 38, no. 9, Sept. 2000.
[3] W.H.W. Tuttlebee, “Software-defined radio: Facets of
a developing technology,” IEEE Personal
Communications, vol. 6, no. 2, pp. 38–44, April 1999.
[4] J. Mitola III, “Software radio architecture: A
mathematical perspective,” IEEE J. Selected Areas in
Communications, vol. 17, no. 4, pp. 514–538, April 1999.
[5] M.S. Cummings and S. Haruyama, “FPGA in the
software radio,” IEEE Communications Magazine, vol. 37,
no. 2, pp. 108–112, Feb. 1999.
[6] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T.
Daud, and A. Thakoor, “Reconfigurable VLSI
architectures for evolvable hardware: From experimental
field programmable transistor arrays to evolution-oriented
chips,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 9, no. 1, pp. 227–232, Feb. 2001.
[7] E. Ramsden, “The ispPAC family of reconfigurable
analog circuits,” Proc. of The Third NASA/DoD Workshop
on Evolvable Hardware, pp. 176–181, 2001.
[8] P.P. Gelsinger, “Microprocessors for the new
millennium: Challenges, opportunities, and new frontiers,”
Proc. IEEE Intl. Solid-State Circuits Conf., 2001.
[9] J. Eyre and J. Bier, “The evolution of DSP processors,”
IEEE Signal Processing Magazine, vol. 17, no. 2, pp. 43–
51, March 2000.
[10] O. Mencer, M. Platzner, M. Morf, and M. Flynn,
“Object-oriented domain specific compilers for
programming FPGAs,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol. 9, no. 1, February 2001.
[11] P. Coad and E. Yourdon, Object-Oriented Analysis,
Prentice-Hall, 1991.
[12] P. Coad and E. Yourdon, Object-Oriented Design,
Prentice-Hall, 1991.
[13] L.C. Briand, C. Bunse, and J.W. Daly, “A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs,” IEEE Trans.
on Software Engineering, vol. 27, no. 6, June 2001.
[14] W. Nebel and G. Schumacher, “Object-oriented
hardware modeling - where to apply and what are the
object?,” Proc. EuroDAC'96, pp. 428-433, Geneva,
Switzerland, 1996.
[15] T. Kuhn, W. Rosenstie, “Java based object oriented
hardware specification and synthesis,” IEEE Design
Automation Conference, pp. 413-418, 2001
[16] P.N. Green, M.D. Edwards, “Object oriented
development for reconfigurable embedded systems,” IEE
Proceedings on Computer and Digital Technology, vol.
147, no. 3, May 2000.

Network processor configured to implement simple modulation,
erorr-control coding,and protocols

...1001001 ...1001001

Reconfigurable
Network

Processor

Reconfigurable
Network

Processor

...1001001 ...1001001

Reconfigurable
Network

Processor

Reconfigurable
Network

Processor

Network processor reconfigured to implement spread spectrum modulation,
Turbo coding, and advanced protocols for an attenuated channel

