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Abstract— We consider the problem of minimum power bidi-
rectional topology optimization in wireless networks with sectored
antennas. We first develop a mixed integer linear programming
model for optimal solution of the problem with sectored anten-
nas. Subsequently, we discuss a centralized heuristic algorithm
which is based on Kruskal’s algorithm for the minimum spanning
tree problem. However, unlike Kruskal’s algorithm which chooses
minimum cost edges from a set of edge weights, our algorithm uses
an incremental cost mechanism to select edges. This incremental
cost mechanism is motivated by the inherently broadcast nature
of the wireless medium. We also discuss a simple branch exchange
heuristic which can be used to improve the topology generated by
the Kruskal-like algorithm. Simulation results indicate that rea-
sonably good solutions can be obtained using the proposed heuris-
tic algorithms.

I. INTRODUCTION

We consider the problem of minimum transmit power bidi-
rectional topology in multihop wireless networks where indi-
vidual nodes are typically equipped with limited capacity bat-
teries and therefore have a restricted communication radius.
Topology control is one of the most fundamental and criti-
cal issues in multihop wireless networks which directly af-
fect the network performance. In wireless networks, topology
control essentially involves choosing the right set of transmit-
ter powers to maintain adequate network connectivity. Incor-
rectly designed topologies can lead to higher end-to-end delays
and reduced throughput in error-prone channels. In energy-
constrained networks where replacement or periodic mainte-
nance of node batteries is not feasible, the issue is all the more
critical since it directly impacts the network lifetime.

In a seminal paper on topology control using transmit power
control in wireless networks, Ramanathan and Rosales-Hain [1]
approached the problem from an optimization viewpoint and
showed that a network topology which minimizes the max-
imum transmitter power allocated to any node can be con-
structed in polynomial time. This is a critical criterion in bat-
tlefield applications since using higher transmitter power in-
creases the probability of detection by enemy radar. In this
paper, we attempt to solve the minimum power topology prob-
lem in wireless networks with sectored antennas. Minimizing
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the total transmit power has the effect of limiting the total in-
terference power in the network. It has been shown in [2] that
this problem is NP-complete for the special case of omnidirec-
tional (or, single sector) antennas. Related work in the area of
minimum power topology construction include [3], [4] and [5],
all of which propose distributed algorithms. Specifically, [3]
proposes a cone-based distributed algorithm which relies only
on angle-of-arrival estimates to establish a power efficient con-
nected topology. Huang et al [4] describe a distributed protocol
which is designed for sectored antenna systems. The work in
[5] explores the use of relative neighborhood graphs (RNG) for
topology control and suggests an algorithm for distributed com-
putation of the RNG. In this paper, we approach the topology
design problem from an optimization viewpoint and focus on
centralized solution methods. The optimal solution method,
in particular, is intended for benchmarking the performance
of other heuristics or for offline computation in cases where
planned deployment of the network is possible.

We first develop a mixed integer linear programming (MILP)
model for optimal solution of the minimum power bidirectional
topology problem with sectored antennas. The formulation is
flow-based and has a polynomial number of constraints, unlike
the model proposed in [6] which uses an exponential number
of constraints. Subsequently, we discuss a heuristic algorithm
which is based on Kruskal’s algorithm [7] for the minimum
spanning tree problem. However, unlike Kruskal’s algorithm
which chooses minimum cost edges from a set of edge weights,
our algorithm uses an incremental cost mechanism to select
edges. This incremental cost mechanism is motivated by the
inherently broadcast nature of the wireless medium. We also
discuss a simple branch exchange heuristic which can be used
to improve the topology generated using the Kruskal-like algo-
rithm.

The rest of the paper is organized as follows. In Section II,
we describe the network model and outline our assumptions. In
Section III, we formally define the problem and in Section IV,
we develop the MILP model for solving the problem optimally.
Section V explains the heuristic algorithms. Finally, simulation
results are presented in Section VI.

II. NETWORK MODEL

We consider a static N -node network and all nodes are as-
sumed to have S-sector antennas. The number of sectors, S, is
related to the beamwidth, θ (in degrees), as follows:

S = 360/θ (1)



Note that θ = 360 (⇒ S = 1) corresponds to an omnidirec-
tional antenna.

We make several simplifying assumptions on the antenna
properties. These are listed below:

• Each sector is assumed to span the angular region [(s −
1)360/θ, (s)360/θ] in the 2-D plane, where 1 ≤ s ≤ S is
the sector number.

• We ignore sidelobe effects and assume that when sector
s is switched on, 100% of the radiated power is confined
within that sector, providing an uniform gain within the
angular region spanned by the sector.

• We consider antennas with 100% efficiency. That is, we
ignore any antenna power losses.

Following our simplifying assumptions, the transmitter power
at i necessary to support the link (i → j), Pij , can be written
to be proportional (accounting for link/antenna gains and other
factors) to dα

ij/S, where dij is the Euclidean distance between
nodes i and j. If (xi, yi) are the coordinates of node i and α
(typically in the range 2 ≤ α ≤ 4) is the channel loss exponent,
dij is given by:

dij =
[

(xi − xj)
2 + (yi − yj)

2
]1/2

(2)

Without any loss of generality, we set the proportionality con-
stant to be equal to 1 and therefore:

Pij = dα
ij/S (3)

Finally, we address only the transmit power costs in this paper
and ignore any reception power costs during the topology setup
phase. We plan to address this issues in future, in a broader
context of K-connectivity, as opposed to simple connectivity
assumed in this paper.

III. PROBLEM STATEMENT

Let Y be a vector of node transmission powers, the element
Yi representing the total transmission power cost of node i. For
an S-sector antenna, Yi can be written as:

Yi =

S
∑

s=1

Yi,s (4)

where Yi,s is the transmission power cost corresponding to sec-
tor s of node i. We assume that each node has a constraint on
the maximum transmitter power it can use per sector, denoted
by Y max

i,s . That is:

0 ≤ Yi,s ≤ Y max
i,s : ∀i ∈ N , 1 ≤ s ≤ S (5)

where N is the set of all nodes in the network and |N | = N .
Also, let E the set of all bidirected edges1. Let the cardinality

of the set be E; i.e., E = |E|. Using the transmitter power
constraint, the set of all bidirectional edges in the network, E ,
is given by:

E = {(i ↔ j) : (i, j) ∈ N , i 6= j,Pij ≤ Y max
i,s ,Pji ≤ Y max

j,s }

(6)

1In this paper, the notation (i ↔ j) is used to denote a bidirectional link
between nodes i and j while a directed link from i to j is represented by (i →
j). The notation (i, j) is used to refer to the node pair.
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Fig. 1. Illustrating link support with a 3-sector antenna. Nodes C, D and
E are located in the same sector, w.r.t A, D being the farthest. Existence of
the link A → D implies the existence of links A → C and A → E. The
total transmission cost of node A is: YA = YA,1 + YA,3, where YA,1 =
max(PAC ,PAD ,PAE) = PAD and YA,3 = PAB . Since sector 2 is not
used, YA,2 = 0.

The third and fourth conditions on the right hand side of (6) en-
force the bidirectionality of edges depending on the maximum
sector power constraint2. For the sake of simplicity, we will,
with a slight abuse of notation, also use the set E to refer to all
directed edges, {i → j}, in the graph.

(i ↔ j) ∈ E ⇒ (i → j) ∈ E and (j → i) ∈ E (7)

In a wireless network with sectored antennas, the existence of
a link from node i to node j also implies the existence of links
from i to all nodes which are geometrically closer to i than j
and are located in the same sector as j, with respect to i. For
example, in Figure 1, nodes C, D and E are all located in the
same sector w.r.t node A, node D being the farthest. Existence
of the link A → D therefore implies the existence of links A →
C and A → E. The total transmit power cost of node A is YA =
YA,1 + YA,3, where YA,1 = max(PAC ,PAD,PAE) = PAD

and YA,3 = PAB . Since sector 2 is not used, YA,2 = 0.
The objective function for the minimum power topological

optimization problem is:

minimize

(

N
∑

i=1

Yi

)

= minimize

(

N
∑

i=1

S
∑

s=1

Yi,s

)

(8)

Note that instead of minimizing the total transmit power, we
could also minimize the per-node maximum transmitter power:

minimize

(

max

{

S
∑

s=1

Yi,s : 1 ≤ i ≤ N

})

(9)

or the per-sector maximum transmitter power:

minimize (max {Yi,s : 1 ≤ i ≤ N ; 1 ≤ s ≤ S}) (10)

The objective functions (9) and (10) are equivalent for networks
with omnidirectional antennas (i.e., S = 1). It has been shown
by Ramanathan and Rosales-Hain [1] that the objective function
in (9) can be solved optimally in polynomial time for an omni-
directional antenna system. The algorithm proposed by them
is also applicable to the sectored antenna case, if (3) is used to

2Note that, while the network may have unidirectional edges (e.g., due to
uneven transmitter power constraints), we restrict the set of candidate edges to
the bidirectional ones only.



compute edge costs. However, it has been shown by Clementi
et al [2] that the objective function in (8) is NP-complete for
S = 1. Consequently, it can be inferred that the general S-
sector optimization problem is NP-complete too.

Finally, we would like to point out that for energy constrained
networks, it is desirable that the network topology be optimized
taking into account battery residual capacities. This can be ac-
complished by redefining Pij as follows:

Pij = C−β
i (t) (dα

ij/S) (11)

where Ci(t) is the normalized battery residual capacity of node
i at time t (0 ≤ Ci(t) ≤ 1) and β is a scaling factor, β ≥ 1.

IV. MILP MODEL

Let {Fij : ∀(i → j) ∈ E} be a set of flow variables (Fij

represents the flow from node i to node j), with E defined as in
(6). Note that the flow variables correspond to directed edges
and therefore |{Fij}| = 2E. The bidirectional topology opti-
mization problem can be interpreted as a single-origin multiple-
destination uncapacitated flow problem, the number of destina-
tions being equal to N−1 (i.e., all nodes other than the source).
In flow problems, there is usually an identified source node and
a commodity needs to be routed from that source to the desti-
nation nodes. In topological optimization problems, however,
there’s no identified source node. As we will see later, our as-
sumption of bidirectional links allows us to arbitrarily designate
a source node without violating the optimality of the solution.
Consequently, let us designate node 1 as the source and all other
nodes {2, 3, · · · N} as the destinations. The corresponding
flow problem therefore involves routing D units of supply from
node 1 (which has no demand) to all other nodes which have
one unit of demand each (and no supply). These supply and
demand constraints can be straightforwardly expressed as the
following flow conservation equations (see for example [8]):

N
∑

j=2

F1j = N − 1; (1 → j) ∈ E (12)

N
∑

j=2

Fj1 = 0; (j → 1) ∈ E (13)

N
∑

j=1

Fji −
N
∑

j=1

Fij = 1; ∀i ∈ {N \ 1}, (i → j) ∈ E (14)

Let us now define a set of indicator variables {Xij : (i → j) ∈
E} such that Xij = 1 if Fij ≥ 1. The set of constraints which
couple the flow variables and the Xij variables is:

(N − 1) · Xij − Fij ≥ 0; ∀(i → j) ∈ E (15)

For example, given the flow solution in Figure 2(b), the status
of the Xij variables are X12 = X15 = X23 = X24 = X56 = 1,
the rest being equal to 0. The coefficient of Xij in (15) is due to
the fact that the maximum flow out of any node on a single link
is equal to N − 1. Note that the smallest integer value of Xij

which satisfies (15) for any nonzero flow out of node i (i.e., if
∑

j Xij ≥ 1) is 1.
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Fig. 2. (a) Optimal minimum power topology. (b) Flow solution with node 1
as the source. (c) Flow solution with node 3 as the source.

Finally, we have to relate the indicator variables to the power
variables, {Yi,s}. To do so, we first define ne(i, s) to be the set
of neighbors of node i which are within radio range of i and
are located within the same sector, s, w.r.t node i. For example,
in Figure 1, ne(A, 1) = {C, E, D}, ne(A, 2) = {F} and
ne(A, 3) = {B}. Next, we note that the transmit power of
both nodes i and j must be adequate in order to support the
bidirectional link (i ↔ j). For example, if Pij = Pji = P , the
transmit powers of both i and j must be equal to P to support
the link (i ↔ j). In other words, the transmit power cost of
node i is affected not only by the status of the links outgoing
from i, but also by the links incident to i. Consequently, the
power variable Yi,s can be written as:

Yi,s = maxj{XijPij , XjiPji : j ∈ ne(i, s)}

Alternately, bidirectionality can be achieved by imposing con-
straints on the symmetricity of the indicator variables:

Xij − Xji = 0; ∀(i → j) ∈ E (16)

With (16) in place, Yi,s can be expressed as:

Yi,s = maxj{XijPij : j ∈ ne(i, s)}

or, equivalently,

Yi,s − XijPij ≥ 0; ∀i, j ∈ ne(i, s), s = 1, 2, · · ·S (17)

We now show that defining Yi,s as above makes the optimal
solution invariant to the choice of the source node in the
flow-balance equations (see eqns. 12, 13 and 14). Consider
the optimal topology shown in Figure 2(a). For simplicity,
we assume that all nodes have omnidirectional antennas, i.e.,
S = 1 in (3). Assume P15 = P51 = 1, P12 = P21 = 6,
P23 = P32 = 3, P24 = P42 = 4 and P56 = P65 = 5.
Figures 2(b) and 2(c) show the status of the flow variables



for different choices of the source node. The Xij variables
corresponding to the flow solutions in Figures 2(b) and
2(c) are X12 = X15 = X23 = X24 = X56 = 1 and
X32 = X24 = X21 = X15 = X56 = 1. Note that, despite
being a leaf in the flow tree in Figure 2(b), the transmit
power cost of node 3 is equal to max{X23P23, X32P32} =
X23P23 = 3, identical to that in Figure 2(c). Simi-
larly, the cost of node 2 in both figures is equal to
max{X23P23, X24P24, X21P21, X32P32, X42P42, X12P12}
= 6. It can easily be verified that the cost of other nodes are the
same in Figures 2(b) and 2(c).

The final set of constraints express the integrality of the Xij

variables and non-negativity of the Fij and Yi,s variables.

Xij ≥ 0, integer; ∀(i → j) ∈ E (18)

Fij ≥ 0; ∀(i → j) ∈ E (19)

Yi,s ≥ 0; ∀i ∈ N , s = 1, 2, · · ·S (20)

Note that an upper bound on Yi,s is not required since it is al-
ready accounted for in defining the set of valid edges (6). The
number of integer variables in the MILP model is equal to 2E
while the number of continuous variables is equal to 2E +SN .
The number of constraints is approximately on the order of
2E + N(1 + 2S).

A. Additional constraints

While the constraints discussed above adequately model the
minimum power topology problem, experimental results sug-
gest that the solution time is greatly reduced (by as much as
one-fourth) if the model is augmented with the following addi-
tional constraints, all of which rely on the symmetric nature of
the indicator matrix (16).

• The number of active indicator variables should be equal
to 2(N − 1).

∑

i

∑

j

Xij = 2(N − 1); ∀(i → j) ∈ E (21)

• Each node must be connected to at least one other node.
∑

j

Xij ≥ 1; ∀(i → j) ∈ E (22)

∑

j

Xji ≥ 1; ∀(j → i) ∈ E (23)

• For each node i, there must be at least one outgoing link
from its neighbors to the set of all other nodes excluding i.
This condition is necessary for network connectivity.

∑

j

∑

k

Xjk ≥ 1; (j → k) ∈ E , j ∈ ∪sne(i, s),

k ∈ N \ {i,∪sne(i, s)}, ∀i (24)

B. Dealing with per-sector maximum power constraint

Minimizing the total transmit power has the effect of lim-
iting the total interference power in the network. Minimiz-
ing the maximum transmit power, on the other hand, is espe-
cially critical in military applications since it is directly related
to the probability of interception/detection. As mentioned in
Section III, the latter criterion can be solved optimally in poly-
nomial time [1]. Unlike a minimum spanning tree, which also

Fig. 3. (a) Optimal topology minimizing the maximum transmit power. The
total transmit power is 1.61 and the maximum power is 0.41, at nodes 5 and 8.
(b) Optimal topology minimizing the total transmit power. The total transmit
power is 1.50 and the maximum power is 0.43, at nodes 4 and 5.

Fig. 4. Illustrating upper and lower bounds of the MPT, w.r.t the MST. The
numbers above the edges represent Pij ’s. (a) Cost of MPT = 2, which is twice
the cost of the MST. (b) Cost of MST = 6, cost of MPT = 1 + max(1,5) + 5 =
11, which is equal to the cost of the MST plus the cost of the bottleneck edge
in the MST.

minimizes the maximum edge weight, a minimum power topol-
ogy (MPT) may not minimize the maximum transmit power, as
illustrated in Figure 3. Consequently, we may want to solve
the MPT problem subject to a constraint on the maximum per-
sector transmit power. Let Ŷ be the optimal per-sector maxi-
mum transmit power obtained after solving the minimax prob-
lem. Redefining the set of valid edges as:

E = {(i ↔ j) : (i, j) ∈ N , i 6= j,Pij ≤ Ŷ ,Pji ≤ Ŷ } (25)

in place of (6) and solving the MILP models will yield a
constrained minimum power topology such that the per-sector
transmit power of all nodes is not greater than Ŷ .

C. Upper and lower bounds on the optimal solution

Since bidirectionality of a link in a minimum power topol-
ogy affects the transmit power level of both its end nodes, it is
easy to see that its maximum cost is bounded by 2MST , where
MST is the cost of the minimum spanning tree. In other words,
one could take the minimum spanning tree, replace each undi-
rected edge by two directed edges and evaluate it on a per-node
per-sector basis using (17). Doing so can at most double the
cost of the MST, as shown in Figure 4(a) for a trivial 2-node
network. On the other hand, since the cost of a node in the
MPT problem is the cost of the maximum weight edge incident
to it, it is possible to construct a minimum power topology from
an MST such that all edges in the MST are accounted for only
once in the MPT, except for the bottleneck edge (defined as the
maximum cost edge in the MST) which must be accounted for
twice. Consider, for example, the MST in Figure 4(b), which
has a cost of 6. Evaluated according to the MPT criterion, it
can be seen that the power cost of nodes A, B and C are 1,
max(1,5) and 5 respectively. The cost of the MPT is therefore
equal to 11.
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Fig. 5. Illustrating the concept of incremental cost of choosing an edge. As-
sume that nodes 2, 3, 4 and 5 are located in sector 1 w.r.t node 1 and nodes
5, 2, 3 and 1 are located in sector 3 w.r.t node 4. Since node 1 is maintaining
bidirected edges with 2 and 3, the transmit power required at its sector 1 an-
tenna is given by: Y1,1 = max(P12 ,P13) = P12. Similarly, since node 4
is currently maintaining a bidirected edge with 5, the transmit power level of its
sector 3 antenna is given by: Y4,3 = P45. The incremental cost of choosing
the edge (1 ↔ 4) is defined as the incremental transmit power support required
at node 1’s sector 1 antenna + the incremental transmit power support required
at node 4’s sector 3 antenna = max(0, P1,4−Y1,1)+max(0, P4,1−Y4,3).

We therefore have the following bounds on the MPT:

(MST + bottleneck cost in MST ) ≤ MPT ≤ 2MST (26)

V. TOPOLOGY CONSTRUCTION AND IMPROVEMENT

HEURISTICS

We first describe a simple heuristic algorithm for construct-
ing the minimum power topology. The algorithm is similar
to Kruskal’s algorithm for the Minimum Spanning Tree prob-
lem, with two salient differences. First, unlike Kruskal’s al-
gorithm which minimizes the sum of edge weights, our algo-
rithm attempts to minimize the node weights, the weight of a
node being defined as the maximum weight of the edge inci-
dent on it. Second, whereas Kruskal’s algorithm chooses the
minimum weight edge at every iteration from the same set of
edge weights, our algorithm implements an incremental cost
mechanism to identify the edge to be chosen at any iteration3.
Before describing the algorithm in more detail, we establish the
following notation:

k = iteration number
Y

k = N × S matrix of node-sector powers after iteration k
Θ = N × N sector matrix

The [i, j]th element of Θ specifies the sector in which node j
is located w.r.t node i.

We illustrate the incremental cost mechanism with an exam-
ple. In Figure 5, assume that nodes 2, 3, 4 and 5 are located in
sector 1 w.r.t node 1 and nodes 5, 2, 3 and 1 are located in sector
3 w.r.t node 4. Since node 1 is currently maintaining bidirected
edges with nodes 2 and 3, the transmit power level of its sec-
tor 1 antenna is given by: Y1,1 = max(P12,P13) = P12.
Similarly, since node 4 is currently maintaining a bidirected
edge with 5, the transmit power level of its sector 3 antenna
is given by: Y4,3 = P45. The incremental cost of choosing
the edge (1 ↔ 4) is defined as the incremental transmit power
support required at node 1’s sector 1 antenna + the incremental
transmit power support required at node 4’s sector 3 antenna =
(P1,4 − Y1,1) + (P4,1 − Y4,3). In general, the incremental
cost of choosing an edge (i ↔ j) at iteration k, IC(i ↔ j), is

3The incremental cost criterion was proposed by Wieselthier et al [9] in the
context of broadcast/multicast routing in wireless networks.

defined as the sum of the incremental power supports required
at nodes i and j, denoted by IC(i) and IC(j).

IC(i ↔ j) = IC(i) + IC(j) (27)

= max(0,Pij −Y
k−1

i,Θij
) + max(0,Pji −Y

k−1

j,Θji
)

For k = 1, the algorithm chooses the minimum weight edge in
E . For k ≥ 2, the edge which incurs the minimum incremental
cost is selected from the set of edges which have not yet been
selected, such that it does not form a cycle with the set of edges
already selected. Ties, if any, are broken arbitrarily. Suppose
that the minimum incremental cost edge at any iteration k is
(m ↔ n). The node-sector power matrix is then updated as
follows:

Y
k
is :=







max(Yk−1

is ,Pmn), if (i, s) = (m, Θmn)

max(Yk−1

is ,Pnm), if (i, s) = (n, Θnm)

Y
k−1

is , otherwise
(28)

The algorithm terminates after N − 1 iterations. A high level
description4 of the algorithm is provided in Figure 6.

1. Set k = 0;
2. Initialize the set of feasible edges, E (see eqns. 6 and 25);
3. Initialize Y

0 = 0.
4. Initialize the topology: T = ∅;
5. Increment k = k + 1;
6. while (k ≤ N − 1)
• Select the edge from E which incurs the minimum incremental

cost (27) and which does not form a cycle with the set of edges
chosen previously.
• Suppose that the edge chosen is (m↔ n)

• T ← {T ∪ (m↔ n)} /* Add (m↔ n) to T */
• E ← E \ (m↔ n); /* Remove edge (m↔ n) from E */
• Update Y

k as in (28).
• Increment k = k + 1;

end while

5. Cost of the minimum power topology, T , is equal to
P

i,s
Y

t−1

is .

Fig. 6. High level description of an heuristic algorithm for solving the mini-
mum power topology problem with sectored antennas. The algorithm assumes
the existence of a spanning tree in the underlying graph.

A. Branch exchange heuristic for topology improvement

In this section, we describe a simple branch exchange al-
gorithm for improving the initial topology generated using the
above Kruskal-like heuristic. Given an initial topology, the al-
gorithm temporarily removes each edge and checks whether the
two subtrees created by the edge removal operation can be bet-
ter reconnected using a replacement edge. If so, the input tree
is modified and the branch exchange heuristic is applied on the
modified tree. This procedure is repeated until no further im-
provement is possible. We illustrate the heuristic using an ex-
ample.

4Note that Figure 6 does not provide any implementation details. Readers
can consult any standard textbook on graph algorithms for an efficient imple-
mentation of Kruskal’s algorithm.



Fig. 7. (a) Initial topology. The node power vector is shown in (30). The cost of the initial topology is 22.6. (b) Edge (5 ↔ 7) removed. The two subtrees are:
tree1 = {5 ↔ 1, 1 ↔ 2, 2 ↔ 4}, tree2 = {7 ↔ 3, 3 ↔ 6, 6 ↔ 8}. (c) Improved tree, after replacing the edge (5 ↔ 7) with (5 ↔ 3). Note that the power
level of node 3 does not change as a result of this replacement operation, since it is still dictated by the branch (3 ↔ 6). Similarly, the power level of node 5
remains unchanged since it is dictated by the branch (5 ↔ 1). However, the cost of node 7 drops from 2.2, required to support the edge 7 ↔ 5, to 0.8, which is
necessary to support the edge (7 ↔ 3). The cost of the improved topology is 21.2, 1.4 units less than the initial topology.

Consider the 8-node network and the initial topology (ob-
tained using the above Kruskal-like heuristic) shown in Figure
7(a). Assume for simplicity that all nodes are provided with
omnidirectional antennas.

The power matrix of the network is:

P =

























− 0.6 − − 3.1 − − −
0.6 − − 2.4 − − − −
− − − − 3.0 4.3 0.8 4.4
− 2.4 − − − − − −
3.1 − 3.0 − − − 2.2 −
− − 4.3 − − − − 0.8
− − 0.8 − 2.2 − − −
− − 4.4 − − 0.8 − −

























(29)

The node-sector power matrix, corresponding to the initial so-
lution is therefore:

Y = [3.1, 2.4, 4.3, 2.4, 3.1, 4.3, 2.2, 0.8]′ (30)

where ′ is the transpose operator. The cost of the initial topol-
ogy is 22.6.

Next, suppose we wish to check whether the edge (5 ↔ 7)
can be replaced with a better edge. The two subtrees obtained
after its removal is shown in Figure 7(b). In general, let tree1

and tree2 be the two subtrees created after removing the edge
(m ↔ n) from the initial tree, such that m ∈ tree1 and n ∈
tree2. The set of potential replacement edges, rep edges, is
then given by:

rep edges = {(i ↔ j) : (i ↔ j) 6= (m ↔ n), (i ↔ j) ∈ E ,

i ∈ tree1, j ∈ tree2} (31)

where E is the initial edge list, as defined in (6). For our ex-
ample, the two subtrees are: tree1 = {5 ↔ 1, 1 ↔ 2, 2 ↔ 4}
and tree2 = {7 ↔ 3, 3 ↔ 6, 6 ↔ 8}. Using the power ma-
trix (29), it can be easily verified that there is only one potential
replacement edge, (5 ↔ 3), and hence rep edges = {5 ↔ 3}.

To verify whether branch exchange would improve the initial
topology, we carry out the following sequence of operations for
each edge in the initial tree, denoted by the variable tree:
Step 1: Create a temporary variable, Ytemp, and set it equal to
Y, the node-sector power matrix of the initial tree.

Step 2: Remove the edge (m ↔ n) from tree and update Y
temp

as follows:

Y
temp
m,Θmn

:= max(Pmk : k ∈ {ne(m, Θmn) \ n},

(m ↔ k) ∈ tree) (32)

Y
temp
n,Θnm

:= max(Pnk : k ∈ {ne(n, Θnm) \m},

(n ↔ k) ∈ tree) (33)

Y
temp
m,Θmn

is set to 0 in (32) if the set {ne(m, Θmn)\n} is empty.

Similarly, Y
temp
n,Θnm

is set to 0 in (33) if {ne(n, Θnm) \ m} is
empty. Recall that ne(i, s) is the set of neighbors of node i
which are located within the same sector, s, w.r.t node i.
Step 3: From all edges in the set rep edges, find the smallest in-
cremental cost edge. As in (27), the incremental cost of adding
edge (i ↔ j) ∈ rep edges is given by:

max(0,Pij −Y
temp
i,Θij

) + max(0,Pji − Y
temp
j,Θji

) (34)

Step 4: Let (i ↔ j) be the smallest incremental cost edge from
step-3. The additional cost involved (if any) in adding the edge
(i ↔ j) is reflected through the following two updates:

Y
temp
i,Θij

:= max(Pij ,Y
temp
i,Θij

) (35)

Y
temp
j,Θji

:= max(Pji,Y
temp
j,Θji

) (36)

Step 5: If the sum of the elements of Y
temp at the end of step 3

is less than the sum of the elements of Y, an improved solution
has been found. The initial tree is then modified and the above
steps are repeated on the new tree.

tree := tree \ (m ↔ n) (37)

tree := tree ∪ (i ↔ j) (38)

Y := Y
temp (39)

Following the above steps for our example, we have:
Step 1: Y

temp = [3.1, 2.4, 4.3, 2.4, 3.1, 4.3, 2.2, 0.8]
′.

Step 2: Remove the edge (5 ↔ 7). Given our assumption of
omnidirectional antennas, the set {ne(m, Θmn) \ n} (see eqn.
32), where m = 5 and n = 7, is equal to {1, 7} \ 7 = 1. Since
the edge (5 ↔ 1) belongs to the initial tree, we set Y

temp
5,1 :=

max(P5,1) = 3.1. Note that the power level of node 5 does
not change from step 1 since it is dictated by the cost of the



higher weight edge incident to it, (5 ↔ 1). Similarly, the set
{ne(n, Θnm) \ n} (see eqn. 33) is equal to {3, 5} \ 5 = 3. The
corresponding update is: Y

temp
7,1 := max(P7,3) = 0.8. The

node-sector power matrix at the end of this step is:

Y
temp = [3.1, 2.4, 4.3, 2.4, 3.1, 4.3, 0.8, 0.8]

T

Step 3: It can be easily verified that there is only one replace-
ment edge, (5 ↔ 3).
Step 4: Add the edge (5 ↔ 3). Using (35) and (36), the
updates at this step are: Y

temp
5,1 := max(P5,3,Y

temp
5,1 ) =

max(3.0, 3.1) = 3.1 and Y
temp
3,1 := max(P3,5,Y

temp
3,1 ) =

max(3.0, 4.3) = 4.3. The power levels of nodes 5 and 3 do not
change from step 2 since they are dictated by the cost of higher
weight edges incident to them, (5 ↔ 1) and (3 ↔ 6). The
node-sector power matrix at the end of this step is therefore:

Y
temp = [3.1, 2.4, 4.3, 2.4, 3.1, 4.3, 0.8, 0.8]

T

The cost of the improved topology is 21.2, 1.4 units less than
the initial topology. The improved tree is shown in Figure 7(c).
Since an improvement has been found, the improvement algo-
rithm is repeated on the new topology.

We saw in our above example that adding the replacement
edge (5 ↔ 3) at step 3 did not incur any additional cost. Sim-
ilarly, removing an edge from the initial topology may not re-
duce the topology cost. Specifically, removing the edge (i ↔ j)
would not reduce the cost if the power levels of the end nodes
in the initial topology are greater than the power required to
support the link, or, if YiΘij

> Pij and YjΘji
> Pji. Con-

sequently, the edge (i ↔ j) need not be considered for re-
moval/replacement during the improvement phase.

VI. SIMULATION RESULTS

We have conducted a preliminary study of the performance of
the optimal and heuristic methods in 15, 20, 30, 40 and 50-node
networks with 3-sector antennas (S = 3). In each case, 100 net-
works were randomly generated and topology costs were aver-
aged to obtain the mean cost. ‘α’ was chosen to be equal to 4
for all cases. The commercially available linear programming
solver, LINDO [10], which uses a LP-based branch and brand
algorithm to solve MILP problems, was used to compute the
optimal solutions. The parameter Y max

i,s was set experimentally
such that the average node degree was in the range 4-6 for all
N . Finally, the normalized residual battery capacity of all nodes
was chosen to be equal to 1, i.e., Ci(t) = 1, ∀i.

Our performance measures for comparing the optimal and
heuristic solutions are the mean (PM1) and the maximum
(PM2) of the percentage relative normalized error or:

100×

∑

i Yi(heur) −
∑

i Yi(opt)
∑

i Yi(opt)

Tables I and II provide a statistical summary of the simula-
tion results, without and with the branch exchange topology
improvement algorithm. From Table I, it can be seen that the
topology construction algorithm provides reasonably good so-
lutions, within 2.3% of the optimal in all cases. With the im-
provement algorithm, the heuristic solutions are within 1.4% of
the optimal. Moreover, the heuristic solutions appear to more
closely approximate the optimal with increasing N .

TABLE I
Comparison of optimal and heuristic solutions, without improvement.

N PM1 PM2

15 2.29 11.26
20 2.04 6.09
30 2.01 6.01
40 1.47 3.21
50 1.23 3.19

TABLE II
Comparison of optimal and heuristic solutions, with improvement.

N PM1 PM2

15 1.34 10.48
20 0.76 5.87
30 0.74 4.73
40 0.69 2.11
50 0.53 2.02

VII. CONCLUSION

In this paper, we considered the problem of minimum power
bidirectional topology optimization in wireless networks with
sectored antennas. First, we developed a mixed integer linear
programming model for optimal solution of the problem. Next,
we discussed heuristic algorithms for topology construction and
improvement. The construction heuristic is based on Kruskal’s
MST algorithm. Simulation results confirm that good results
can be obtained using the heuristics, and in very little computa-
tion time.
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