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Abstract— A method for optimal adaptive setting of pulse-position-
modulation pulse detection thresholds, which minimizes the total prob-
ability of error for the dynamically fading optical free space channel, is
presented. The threshold’s adaptive setting, in response to varying chan-
nel conditions, results in orders of magnitude improvement in probability
of error, as compared to use of a fixed threshold. The adaptive threshold
system itself is based on a robust channel identification system that uses
average signal strengths to estimate the degree of fade and total attenu-
ation in the channel, and a radial basis function network for estimating
pulse spreads, all with excellent accuracy.

I. I NTRODUCTION

Over the past years, NASA and JPL have continuously
sought to reduce spacecraft size and mass while increasing its
information return capability. Laser communications provide
a way of achieving this goal. The highly collimated beam al-
lows for significant reductions in the size and mass of the com-
munications terminal along with reduced power requirements.
Optical communications also avoids problems involving ra-
dio frequency resource and spectrum allocation, interference,
and frequency and bandwidth regulation. Since an increasing
number of missions will operate at high downlink data rates,
the avoidance of these issues is a significant advantage.

The optical communication system under study at JPL uses
pulse-position modulation (PPM) to transmit data. Each PPM
symbol consists of 256 signal slots of 20 ns each, followed by
approximately 15�s of “dead time” (see Fig. 1). The “dead-
time” is present to allow the Q-switched laser sufficient charg-
ing time between pulses. Within the slot, there is a small (2 ns)
guard time on each side of the 16 ns duration pulse to provide
a safety margin against pulse jitter associated with Q-switched
lasers [1], [2].
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Fig. 1. Pulse Position Modulation timing diagram: the slot width Ts is 20
ns; the symbol width Tl is 20 �s; there are Ns = 256 slots in a symbol,
within which a signal pulse can occur; there are Nd � 750 dead-time slots in
a symbol; and there are about one thousand (Ns+Nd) total slots per symbol.
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Space-based optical communication systems are subject to
several factors which can impact their performance. Changes
in atmospheric conditions on Earth can cause time-smearing,
fading, and changes in the received pulse shape [3]. Further-
more, laser communication systems are sensitive to pointing
errors, which can cause deep signal fades. As a result, the
problem of detecting and acquiring PPM signals under vary-
ing channel conditions is a major challenge. If it is known a
priori that a PPM symbol does exist, then it is known that the
optimal strategy for demodulation is to pick the maximum slot
value [4], [5]. However, the problem of initially detecting and
acquiring the signal poses a greater challenge since selecting
the maximum slot value simply yields a random number if no
signal is present.

To address this problem, an adaptive threshold device can
be employed to eliminate the “noise-only” case, and assist in
the problem of detection and acquisition of the PPM signal.
Such a device is a component of an overall “ intelligent agent” ,
which, additionally, assists in slot and frame synchronization,
control of the phase-locked loop, and determination of channel
conditions and characteristics [1], [6].

The signal detection threshold is set based on information
received from the intelligent agent, in the form of extracted
channel parameters (in turn obtained by analyzing the output
of an initial avalanche photodiode detector – APD). We will
discuss the design and testing of both the channel parame-
ter identification system, and the adaptive threshold system,
in this paper, and illustrate advantages and performance gains
obtained under simulated channel degradation conditions.

II. PULSE MODELING

It is common for optical pulses to assume Gaussian or ex-
ponentially decaying shapes [3], [7] in the time-domain. An
ideal Gaussian pulse is described by

E [x(t)] = �
ns

�
p
2�

exp

�
� (t� t0)

2

2�2

�
; (1)

where ns is the average number of signal photons in the signal
pulse, � is the time-domain spread of the pulse, t0 is the center
of the pulse in the time-domain, and � is the multiplicative
fade, assumed to be a constant. An ideal exponential pulse
with time constant � is described by

E [x(t)] = (�ns=�) exp (�t=�) (2)
Eight different pulse types and spreads (four Gaussian and

four exponential) corresponding to eight hypotheses were con-
sidered, as defined in Table I. Hypotheses H1 and H5 cor-
respond to “half-width” pulses, which are one-half the nor-
mal width. Hypotheses H2 and H6 correspond to “ full-width”
pulses in which 99% of the photons are contained within the
20 ns slot duration. Hypotheses H3 and H7 correspond to
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Fig. 2. Illustration of Gaussian (left), and exponential (right) pulse shapes
used in the simulations. The sampling rate is 800 MHz (16 samples per 20
ns slot). For the Gaussian pulses, three PPM slots (48 samples) are illustrated
with the signal slot in the center. The exponential pulses begin at the start of
the signal slot in order to maximize photon collection within the signal slot.

“double-width” pulses containing 99% of their photons within
two PPM slots, and hypotheses H4 and H8 correspond to
“ triple-width” pulses in which 99% of the photons are spread
over three slots. In the exponentially decaying case the pulse is
defined to start at the beginning of the slot (to catch the largest
number of photons in the signal slot), while in the Gaussian
case the pulse is centered at the middle of the signal slot (once
again to maximize the number of photons in the signal slot it-
self). Figure 2 illustrates the four Gaussian and exponential
pulse types tested.

Hypothesis � Hypothesis �

(Gaussian) (Exponential)

H1 0:1Ts H5 0:5Ts= ln(100)

H2 0:2Ts H6 Ts= ln(100)

H3 0:4Ts H7 2Ts= ln(100)

H4 0:6Ts H8 3Ts= ln(100)

TABLE I

HYPOTHESES AND PULSE SHAPES CORRESPONDING TO FIG. 2.

The attenuation of the signal can be modeled by another
multiplicative parameter �, which is a function of � and � for
Gaussian pulses; and � and � for exponential pulses.

Once �, �, and � are known, or adaptively estimated, they
can be used in conjunction with receiver operating character-
istic (ROC) curves to adaptively select the optimum signal de-
tection threshold, �, for minimizing the total error probability.

A. Estimating pulse spread

Neural networks are commonly used to solve problems in
pattern recognition [8]. We use a radial basis function network
here to recognize pulse shapes, with particular emphasis on
determining the pulse spread � or � , via the following steps:
1. Noise-only portions of the received PPM symbols (i.e.
the “dead-slots” ) are averaged to compute the ambient back-
ground signal. This DC background level is subtracted out, re-
moving daylight effects, and leaving us with only the received
signal pulse; thus simplifying the analysis.
2. The vector of pulse samples is normalized to unit L1 norm.
A great deal of training time can be saved if the neural network
is presented with normalized pulse shapes. This improves sys-
tem reliability as well since the network is less likely to be
confused by differences in the pulse caused by fading.
3. The normalized pulse is presented to the neural network for
analysis. The network returns a number indicating its estimate
of the pulse spread parameter � for a Gaussian pulse or the
time-decay parameter � for an exponential pulse.
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Fig. 3. Classification performance of the RBF network without pulse fading.
The light gray line denotes actual pulse categories and the darker line denotes
the network’s classification output. The error is also illustrated.

Additional performance gains can be obtained by using a
Reed-Solomon (255,223) code to encode the data in order to
detect and remove defective PPM symbols, or possible shot
noise events. A total of 255 received symbols are decoded to
obtain 223 original data symbols. These are then re-encoded,
and the resulting 255 “corrected” symbols are compared to
the symbols received from the channel. Any channel symbols
differing from the results of re-encoding are considered to be
noise events and are ignored. Symbols agreeing with the re-
encoded symbols are deemed reliable, and used in the average.

For each symbol to be averaged, five slots (80 samples) con-
sisting of the received PPM signal pulse and its adjacent slots
are selected. An average pulse consisting of up to 255 received
channel pulses is thus computed. Forty-eight samples, corre-
sponding to the three central slots, are presented to the RBF
network for classification since the 32 side samples contain
little information of use to the neural network. This procedure
results in more reliable averaged symbols being presented to
the RBF network, allowing very accurate pulse classification.

Figure 3 illustrates the ability of the RBF network to clas-
sify pulses based on their pulse spreads. The actual pulse cat-
egories and the neural network’s classification output are seen
to be very close to each other, demonstrating the network’s
excellent classification accuracy and low error performance.

B. Estimating pulse fade �

The fade � of the slot signal is a linear function of the L1

norm of the pulse. Since the pulse vector consists of 80 sam-
ples, corresponding to 5 slots, the L1 norm of the pulse is not
significantly affected by pulse smearing even for fairly large
pulse spreads. Let C0 denote the average signal charge re-
leased by the APD over five slots under ideal conditions, (i.e.
no attenuation caused by fading or by scintillation). Let C de-
note the average charge actually received over the five slots.
The background daylight level is removed from both C 0 and
C. The fade estimate is then given by:

� = C=C0 (3)

Figure 4 illustrates the ability of the system to estimate fades
once the pulse spread � is known. The estimated fades are
plotted against actual fades, and it can be seen that the points
lie close to the line y = x, indicating the estimator’s accuracy.



0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
Actual

α E
st

im
at

ed

Theoretical
Experimental

Fig. 4. Fade estimation performance for a Gaussian pulse with � = 0:2Ts,
and � = 0:10� 1:00 under daytime conditions.

C. Determining pulse attenuation �

In addition to the multiplicative fade � caused by the chan-
nel, scintillation causes photons to be spread outside of the
main signal slot, causing further attenuation. Let x0 denote the
nominal slot signal from the APD due only to signal photons
in the case where fading and scintillation are not significant.
Let x denote the actual average APD slot output due to sig-
nal photons only under actual operating conditions. Note that
the DC background due to ambient light has already been sub-
tracted away in both x0 and x. The best (maximum likelihood)
estimate of � is then given by:

� = x=x0 (4)
Note that Eq. (3) is based on summation over five slots when

calculatingC andC0. By contrast, Eq. (4) is based on summa-
tion over only one slot (the signal slot). � is thus a measure of
signal strength only within the PPM slot containing the signal
pulse. �, by contrast, is a measure of signal strength which
includes any photons which have been spread to slots adjoin-
ing the main signal slot. Since � is a more inclusive measure,
it is affected little by pulse spread. By contrast, even in the
absence of any multiplicative fade, � can be greatly reduced if
a wide pulse spreads its photons into other PPM slots.

There exists a relationship between � and �. The total mul-
tiplicative attenuation � of a Gaussian pulse can be written as

� = �f(�); (5)
where f(�) is the average proportion of “signal photons” con-
tained in the signal slot. This is derived to be

f(�) =

Z Ts

2

�
Ts

2

1

�
p
2�

exp

�
� t2

2�2

�
dt = 1� 2Q

�
Ts
2�

�
;

(6)
and thus

� = �

�
1� 2Q

�
Ts
2�

��
; (7)

as expressed in terms of the commonly used “Q” function in
communications. 1

In the case of an exponential pulse (Eq. (2)), we define the
pulse duration as the time Td which contains, on average, 99%
of the photons in the pulse. This yields � = Td= ln(100) as
the pulse’s time constant.

1Q(x) =
p
2�

(�1) R1
x

exp(�t2=2)dt

Given � , we compute the average fraction of signal photons
in a slot by computingR Ts

0
exp (�t=�) dtR

1

0
exp (�t=�) dt = 1� exp (�Ts=�) = 1� (0:01)

Ts

T (8)

which in turn yields the following for �:

� = �
h
1� (0:01)

Ts

T
d

i
= �

�
1� exp

�
�Ts
�

��
: (9)

It is possible to use either Eq. (7) or (9) to compute � for the
corresponding cases. We will use Eq. (4) for both cases here.

III. PULSE DETECTION

Starting with estimates of the above parameters at regular
time intervals, the next step in determining the signal detection
threshold is to compute the receiver operating characteristic
(ROC) curves.

Let PFA be the probability of false alarm. This is the prob-
ability that APD noise will exceed the signal detection thresh-
old, thus causing a PPM symbol detection event when no PPM
symbol exists. Let PD be the probability of successful signal
detection, which is the probability that if a pulse is present it
will be successfully detected. The two hypotheses are there-
fore: �0, the hypothesis under which no pulse has been sent;
and �1, the hypothesis under which a pulse has been sent.

Let p(xj�0) denote the probability density function (pdf) of
the received slot signal x given hypothesis �0 and p(xj�1) de-
note the pdf of the received slot signal x given hypothesis � 1.
PFA and PD are then given in terms of the threshold � as:

PFA (�) =

Z
1

�

p(xj�0)dx (10)

PD (�) =

Z
1

�

p(xj�1)dx (11)

Equations (10) and (11) are used to compute the ROC curve
for this receiver - parameterized by � for a given set of channel
conditions - as a plot of PD versus PFA.

The significance of the ROC lies in the calculation of error
probabilities Pe. An error is either a false alarm or a missed
detection. Pe as a function of � is given by:

Pe (�) = P (�0)PFA(�) + P (�1)(1� PD(�)) (12)
Using the parameterized values of PFA and PD from the ROC
in conjunction with a priori probabilities, we can compute the
probability of error as a function of the detection threshold �,
allowing the optimal threshold � to be determined.

A. The use of � in selecting a ROC

Selection of an ROC to be used in Eq. (12) is made based on
a corresponding estimated value for �. It is therefore reason-
able to ask whether the use of an overall slot signal attenuation
� for this purpose is justified. This can be an important issue
if the time-domain spread of the pulse is unusually large, lead-
ing to significant presence of signal photons in slots adjacent
to the signal slot. 2

Experimental results, however, suggest that the ROC typi-
cally remains the same for constant � even when significant
variations exist in both � and � (� and � for exponential
pulses). This is illustrated in Fig. 5. In spite of significant
differences in pulse shapes, the ROC is essentially a function
of total signal slot attenuation �. These and other similar re-
sults justify the use of � in selecting an ROC curve, followed
by the use of the ROC to compute Pe.

2This will not be the case for most typical values of � or � .
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Fig. 5. Illustrated here are a “ theoretical” ROC curve for � = 0:2900; and
two experimentally obtained ROC curves: “Gaussian 1” for the case where
� = 0:2Ts and � = 0:30, corresponding to � = 0:2963, and “Gaussian 2”
for the case where � = 0:6Ts and � = 0:50, corresponding to � = 0:2977.

B. The issue of unknown a priori probabilities

In practice, a priori probabilities P (�0) and P (�1) in
Eq. (12) are rarely known. To assess system performance, the
minimax criterion may be used to determine a priori probabil-
ities yielding the highest probability of error P �e (�). Figure
6 illustrates this worst case P �e (�) as a function of the total
signal slot attenuation � and of the threshold �. In Fig. 6, the
threshold � is expressed as a percentage of the maximum, de-
fined as

�max = 2q�G(ns + nb) (13)

where q is the electron charge (1:6� 10�19 C), � is the quan-
tum efficiency of the APD (0:38 in our case), G is the average
APD gain (40 in our case), ns is the number of signal photons
in a single pulse, and nb is the number of background noise
photons in a slot. �max was calculated separately for day and
night cases since they involve different values of ns and nb.
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Fig. 6. log10(Pe) as defined in Eq. (12) plotted as a function of the threshold
� and the multiplicative attenuation � for both day (left) and night (right)
conditions, for the case of worst case a priori probabilities. The deep valley in
the plot traces the path of the optimal threshold for different �. It can be seen
that for lower values of � the optimal threshold is lower, while higher values
of � require higher thresholds.

Figure 6 shows a deep valley in the plot of P �e versus both
� and �. This valley traces the optimal value of � for a given
�, clearly illustrating the critical need for the system to adapt
its threshold as � changes.

IV. EXPERIMENTAL RESULTS

A. Example 1: Gaussian pulse – daytime steady-state

Two sets of operating conditions are presented. Under the
first set, signals are prepared with � = 0:5, and � = 0:6,

yielding � = 0:2977. � and � are then estimated for the noisy
channel, using Eqs. (3) and (4). They are found to be �̂ =

0:4898 and �̂ = 0:3037, which are very close to true values.
Under the second set, the signals have � = 0:8 and � = 0:2,

yielding � = 0:7901. � and � are similarly estimated and
found to be �̂ = 0:7917 and �̂ = 0:7712, once again very
close to true values.

In both cases a (255,223) Reed-Solomon code was used to
remove defective PPM symbols.

0

0.5

1
0 20 40 60 80 100

−8

−6

−4

−2

0

λ (% of λ
MAX

)β

lo
g 10

(P
e)

0

0.5

1
0 20 40 60 80 100

−8

−6

−4

−2

0

λ (% of λ
MAX

)β

lo
g 10

(P
e)

Fig. 7. log10(Pe) as defined in Eq. (12) plotted as a function of the threshold
� and the multiplicative attenuation � for both day (left) and night (right)
conditions, for the case of equal a priori probabilities. See also Fig. 6.

We can compute the theoretical error probabilities by using
� for each case to select appropriate ROC curves. Assuming
P (�0) = P (�1) = 0:5, the Pe surfaces can be computed (see
Fig. 7). 3

These can be cut along the � = 0:2977 and � = 0:7901
planes to obtain error probabilities as a function of the thresh-
old � (see Fig. 8). By choosing the minimum along the er-
ror probability lines, we can find the optimal threshold for
the system. For the first case, where � = 0:2977, the opti-
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Fig. 8. Theoretical (solid) and experimental (dashed color) error probabil-
ities for � = 0:2977 (top), and � = 0:7901 (bottom), assuming equal a
priori probabilities and showing excellent agreement between the two. The
mismatch near the trough of the curve on the right is due to an insufficient
number of error events at the corresponding threshold.

3Note that the error surfaces are very similar to those for worst case mini-
max error probabilities (Fig. 6), making the equal a priori case a reasonable
case for experimentation.



� = 0:2977 � = 0:7901

� = 23:0% 2:76� 10�2 1:39� 10�2

� = 29:9% 0:374 4:06� 10�6

TABLE II

THEORETICAL Pe VALUES AS A FUNCTION OF THRESHOLD � AND TOTAL

ATTENUATION � FOR THE TWO DAYTIME CASES OF FADING.

�̂ = 0:3037 �̂ = 0:7712

�̂ = 23% 2:92� 10�2 1:30� 10�2

�̂ = 31% 0:353 4:71� 10�7

TABLE III

EXPERIMENTALPe VALUES AS A FUNCTION OF THRESHOLD � AND

TOTAL ATTENUATION � FOR TWO DAYTIME CASES OF FADING.

mal threshold from the theoretical curve is found to be 23.0%
(of �max) with a Pe = 2:76 � 10�2. For the second case,
where � = 0:7901, the optimal threshold is 29.9% with
Pe = 4:06� 10�6.

To illustrate the importance of changing the threshold as
fading conditions change, consider the following scenarios.

For case I, with � = 0:2977, we set the threshold to its
optimal value of 23%. Now if the threshold is not adapted as
the channel changes to a state where � = 0:7901, (case II),
Pe will approach 1:39 � 10�2, which is nearly 4 orders of
magnitude worse than the optimal value of Pe = 4:06� 10�6

achievable by adjusting the threshold to 29.9%.
Similarly, let’s say we start in case II with � = 0:7901; set

the threshold to its optimal value of 29.9%; and then approach
severe fading, causing � to fall to 0:2977 as in case I. If the
threshold is not adapted to respond to this channel, we will
have Pe = 0:374, which represents a greater than one in three
chance of making an error. By contrast, adjusting the threshold
down to 23.0% would reduce Pe to only 2:76� 10�2, which
is less than a three-percent chance of error. This represents
a full order of magnitude improvement in error probabilities
resulting from threshold adjustment.

These results are summarized in Tables II and III. Excellent
agreement between theoretical and simulated values of Pe and
� is observed. The discrepancy between experimental and the-
oretical Pe values for � = 0:7901 and � = 29:9% is due to an
insufficient number of error events in the simulations.

B. Example 2: Exponential pulse – night acquisition

Here only ten pulses are averaged for acquisition and
rapid determination of channel parameters. No error con-
trol code is used to remove defective symbols. The rele-
vant parameters are as follows. Case I: fade � = 0:30,
spread � = Ts= ln (100). Case II: fade � = 0:70, spread
� = Ts= ln (100).

Results similar in nature to Example 1 are obtained.
Tables IV and V illustrate the performance of the system.

The need for threshold adaptation, and the dramatic improve-
ment in error probability as a result of it are once again con-
firmed, as in Example 1.

V. CONCLUSIONS

A method for adaptive setting of PPM pulse detection
thresholds has been presented. The optimal detection thresh-
old so obtained minimizes the total probability of error (either
false alarm or missed detection) under a wide range of channel

� = 0:2970 � = 0:6930

� = 9:5% 2:49� 10�2 9:74 � 10�3

� = 15:0% 0:130 6:99 � 10�5

TABLE IV

THEORETICALPe VALUES AS A FUNCTION OF THRESHOLD � AND TOTAL

ATTENUATION � FOR THE TWO NIGHT TIME CASES OF FADING.

�̂ = 0:2934 �̂ = 0:7043

�̂ = 9:6% 1:87� 10�2 7:15 � 10�3

�̂ = 16:0% 0:164 2:50 � 10�5

TABLE V

EXPERIMENTALPe VALUES AS A FUNCTION OF THRESHOLD � AND

TOTAL ATTENUATION � FOR TWO NIGHT TIME CASES OF FADING.

conditions. Its adaptive setting, in response to varying chan-
nel conditions, results in orders of magnitude improvement in
probability of error, as compared to use of a fixed threshold,
and is critical for free space optical PPM systems operating
under fading and scintillation.

The adaptive threshold system itself is based on a ro-
bust channel identification system that uses average signal
strengths to estimate the degree of fade and total attenuation,
and an RBF network for estimating pulse spreads, all with ex-
cellent accuracy.

The channel identification system presented here is cur-
rently being further developed and incorporated into the PPM
synchronization subsystem to aid in slot and symbol synchro-
nization, in addition to signal detection.
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