Autonomous Mission Design and Data Fusion: Laying the groundwork for Decadal Mission swath altimetry and ocean vector winds.

Bruce M Howe¹ (+18089560466; bhowe@hawaii.edu)
Payman Arabshahi² (+12062216990; payman@apl.washington.edu)
Steven Businger¹ (+18089562569; businger@hawaii.edu)
Yi Chao³ (+18183548168; Yi.Chao@jpl.nasa.gov)
Steve Chien³ (+18183935320; steve.chien@jpl.nasa.gov)
Andrew Gray² (+16267576903; aagray@u.washington.edu)

¹School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, United States
²Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, United States
³Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, United States

In the coming decade, the autonomous coordinated utilization of space, atmospheric, surface, and ocean assets, sensor webs, and data will assume more importance, as systems become more complex and tightly integrated, and as the need to know our environment with ever greater accuracy and precision becomes more acute. We have begun to address this issue with a prototype virtual ocean observatory that includes present and future NASA satellite missions (Jason-2 and QuikSCAT; and SWOT [swath altimetry] and XOVWM [ocean vector winds], respectively); atmosphere and ocean models (WRF/LAPS and ROMS, respectively); atmosphere and ocean models (WRF/LAPS and ROMS, respectively); and in-situ sensors and platforms (underwater gliders). In our prototype system, the goal is to develop the architecture and implementation of the necessary software modules (e.g., automated data fusion/assimilation, and automated planning technology) to achieve adaptive in-situ sampling through feedback from space-based-assets (in this case via the SWOT simulator) thereby contributing to the orbit design during the first, experimental phase (~6-9 months) of the SWOT mission. This work is one step in the process of infusing technology into the development pipeline.