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[. ABSTRACT III. MOORED PROFILER SYSTEM IV. FUTURE
Much of the cost and effort of new ocean observatories will be in the infrastructure that directly supports sensors, such as moorings and mobile To enable better vertical sampling of the ocean, we are developing a moored profiler system to be connected to a cabled These sensor network infrastructure developments enable a wide range of
platforms, which in turn connect to a “backbone” infrastructure, such as will be provided by the ORION ocean observatories. Three elements of observatory node, thereby removing power as the major constraining factor. A profiler docking station with an inductive coupler new sensing modalities with fixed and mobile systems. On the mooring, one
this sensor network infrastructure are in various stages of development, presented here: a cable-connected mooring system with a profiler will transfer power from the cabled node moored profiler. Further, two-way inductive communications will be used to offload can put easily-serviced winch systems to sample the upper ocean, as well as
under real-time control with inductive battery charging; a glider with integrated acoustic communications and broadband receiving capability; profiler data at modest rates in real time as well as transfer adaptive sampling commands. Secondary junction boxes on the complex instruments such as mass spectrometers, environmental sampling
and integrated acoustic navigation, communications, tomography, and ambient sound on various scales. subsurface float and on the seafloor will provide several hundred watts, 100 Mb/s Ethernet, and precise time to users, and be processors, acoustic imaging and tomography systems, etc. In addition to
ROV-serviceable. Instrument packages can be added on the subsurface float, such as a winched profiling system to carry in-situ conventional ocean sampling, the mobile platforms can serve as data trucks,
and point and remote sensors through the mixed layer to the surface. This mooring will be tested in early 2007 in Puget Sound launched from a pier, going to remote areas (e.g., Southern Ocean) to retrieve

and deployed on the MARS cabled observatory system in Monterey Bay, California, in 900 m of water in November 2007. data from long-lasting robust instrumentation. This work continues efforts to
provide the infrastructure elements throughout the ocean volume: power,
precise timing, communications, and navigation; necessary for the NSF

@ ORION program as well as Navy applications.
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